We can't use the superclass method because it relies on the
algebra being associative.
+ EXAMPLES:
+
+ The inverse in the spin factor algebra is given in Alizadeh's
+ Example 11.11::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,10).abs()
+ sage: J = JordanSpinSimpleEJA(n)
+ sage: x = J.random_element()
+ sage: while x.is_zero():
+ ....: x = J.random_element()
+ sage: x_vec = x.vector()
+ sage: x0 = x_vec[0]
+ sage: x_bar = x_vec[1:]
+ sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
+ sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
+ sage: x_inverse = coeff*inv_vec
+ sage: x.inverse() == J(x_inverse)
+ True
+
TESTS:
The identity element is its own inverse::