\begin{equation*}
\unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}}
\end{equation*}
+
+ Finally, we have the four standard types of intervals in $\Rn[1]$,
+ %
+ \begin{align*}
+ \intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\
+ \intervaloc{a}{b} &= \setc{ x \in \Rn[1]}{ a < x \le b },\\
+ \intervalco{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x < b }, \text{ and }\\
+ \intervalcc{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x \le b }.
+ \end{align*}
\end{section}
\begin{section}{Cone}
\providecommand*{\cartprodmany}[3]{ \binopmany{\bigtimes}{#1}{#2}{#3} }
\providecommand*{\directsummany}[3]{ \binopmany{\bigoplus}{#1}{#2}{#3} }
\providecommand*{\unionmany}[3]{ \binopmany{\bigcup}{#1}{#2}{#3} }
+
+
+% The four standard (UNLESS YOU'RE FRENCH) types of intervals along
+% the real line.
+\providecommand*{\intervaloo}[2]{ \left({#1},{#2}\right) } % open-open
+\providecommand*{\intervaloc}[2]{ \left({#1},{#2}\right] } % open-closed
+\providecommand*{\intervalco}[2]{ \left[{#1},{#2}\right) } % closed-open
+\providecommand*{\intervalcc}[2]{ \left[{#1},{#2}\right] } % closed-closed