....: check=False)
sage: K.is_proper() == pi_cone.is_proper()
True
+
+ The positive operators of a permuted cone can be obtained by
+ conjugation::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_ambient_dim=4)
+ sage: L = ToricLattice(K.lattice_dim()**2)
+ sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+ sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+ sage: pi_of_pK = positive_operator_gens(pK)
+ sage: actual = Cone([t.list() for t in pi_of_pK],
+ ....: lattice=L,
+ ....: check=False)
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: expected = Cone([(p*t*p.inverse()).list() for t in pi_of_K],
+ ....: lattice=L,
+ ....: check=False)
+ sage: actual.is_equivalent(expected)
+ True
"""
# Matrices are not vectors in Sage, so we have to convert them
# to vectors explicitly before we can find a basis. We need these
sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
sage: Z_cone.dim() == 3
True
+
+ The Z-transformations of a permuted cone can be obtained by
+ conjugation::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_ambient_dim=4)
+ sage: L = ToricLattice(K.lattice_dim()**2)
+ sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+ sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+ sage: Z_of_pK = Z_transformation_gens(pK)
+ sage: actual = Cone([t.list() for t in Z_of_pK],
+ ....: lattice=L,
+ ....: check=False)
+ sage: Z_of_K = Z_transformation_gens(K)
+ sage: expected = Cone([(p*t*p.inverse()).list() for t in Z_of_K],
+ ....: lattice=L,
+ ....: check=False)
+ sage: actual.is_equivalent(expected)
+ True
"""
# Matrices are not vectors in Sage, so we have to convert them
# to vectors explicitly before we can find a basis. We need these