import Numeric.LinearAlgebra hiding (i, scale)
import Prelude hiding (LT)
-import Test.QuickCheck (Arbitrary(..), Gen)
+import Test.QuickCheck (Arbitrary(..), Gen, choose)
import Cardinal
import Comparisons (nearly_ge)
import RealFunction
import ThreeDimensional
-data Tetrahedron = Tetrahedron { fv :: FunctionValues,
- v0 :: Point,
- v1 :: Point,
- v2 :: Point,
- v3 :: Point,
- precomputed_volume :: Double }
- deriving (Eq)
+data Tetrahedron =
+ Tetrahedron { fv :: FunctionValues,
+ v0 :: Point,
+ v1 :: Point,
+ v2 :: Point,
+ v3 :: Point,
+ precomputed_volume :: Double,
+
+ -- | Between 0 and 23; used to quickly determine which
+ -- tetrahedron I am in the parent 'Cube' without
+ -- having to compare them all.
+ number :: Int
+ }
+ deriving (Eq)
instance Arbitrary Tetrahedron where
rnd_v2 <- arbitrary :: Gen Point
rnd_v3 <- arbitrary :: Gen Point
rnd_fv <- arbitrary :: Gen FunctionValues
+ rnd_no <- choose (0,23)
+
-- We can't assign an incorrect precomputed volume,
-- so we have to calculate the correct one here.
- let t' = Tetrahedron rnd_fv rnd_v0 rnd_v1 rnd_v2 rnd_v3 0
+ let t' = Tetrahedron rnd_fv rnd_v0 rnd_v1 rnd_v2 rnd_v3 0 rnd_no
let vol = volume t'
- return (Tetrahedron rnd_fv rnd_v0 rnd_v1 rnd_v2 rnd_v3 vol)
+ return (Tetrahedron rnd_fv rnd_v0 rnd_v1 rnd_v2 rnd_v3 vol rnd_no)
instance Show Tetrahedron where