sage: J(x).inner_product(J(y))
32
+ The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
+ multiplication is the usual matrix multiplication in `S^n`,
+ so the inner product of the identity matrix with itself
+ should be the `n`::
+
+ sage: J = RealSymmetricSimpleEJA(3)
+ sage: J.one().inner_product(J.one())
+ 3
+
+ Likewise, the inner product on `C^n` is `<X,Y> =
+ Re(trace(X*Y))`, where we must necessarily take the real
+ part because the product of Hermitian matrices may not be
+ Hermitian::
+
+ sage: J = ComplexHermitianSimpleEJA(3)
+ sage: J.one().inner_product(J.one())
+ 3
+
TESTS:
Ensure that we can always compute an inner product, and that
Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
for i in xrange(dimension) ]
- # The usual inner product on R^n.
- ip = lambda x, y: x.vector().inner_product(y.vector())
-
return FiniteDimensionalEuclideanJordanAlgebra(field,
Qs,
rank=dimension,
- inner_product=ip)
+ inner_product=_usual_ip)
for j in xrange(n/2):
submat = M[2*k:2*k+2,2*j:2*j+2]
if submat[0,0] != submat[1,1]:
- raise ArgumentError('bad real submatrix')
+ raise ValueError('bad real submatrix')
if submat[0,1] != -submat[1,0]:
- raise ArgumentError('bad imag submatrix')
+ raise ValueError('bad imag submatrix')
z = submat[0,0] + submat[1,0]*i
elements.append(z)
return matrix(F, n/2, elements)
+# The usual inner product on R^n.
+def _usual_ip(x,y):
+ return x.vector().inner_product(y.vector())
+
+# The inner product used for the real symmetric simple EJA.
+# We keep it as a separate function because e.g. the complex
+# algebra uses the same inner product, except divided by 2.
+def _matrix_ip(X,Y):
+ X_mat = X.natural_representation()
+ Y_mat = Y.natural_representation()
+ return (X_mat*Y_mat).trace()
+
def RealSymmetricSimpleEJA(n, field=QQ):
"""
return FiniteDimensionalEuclideanJordanAlgebra(field,
Qs,
rank=n,
- natural_basis=T)
+ natural_basis=T,
+ inner_product=_matrix_ip)
def ComplexHermitianSimpleEJA(n, field=QQ):
"""
S = _complex_hermitian_basis(n)
(Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+ # Since a+bi on the diagonal is represented as
+ #
+ # a + bi = [ a b ]
+ # [ -b a ],
+ #
+ # we'll double-count the "a" entries if we take the trace of
+ # the embedding.
+ ip = lambda X,Y: _matrix_ip(X,Y)/2
+
return FiniteDimensionalEuclideanJordanAlgebra(field,
Qs,
rank=n,
- natural_basis=T)
+ natural_basis=T,
+ inner_product=ip)
def QuaternionHermitianSimpleEJA(n):
sage: e2*e3
0
+ In one dimension, this is the reals under multiplication::
+
+ sage: J1 = JordanSpinSimpleEJA(1)
+ sage: J2 = eja_rn(1)
+ sage: J1 == J2
+ True
+
"""
Qs = []
id_matrix = identity_matrix(field, n)
Qi[0,0] = Qi[0,0] * ~field(2)
Qs.append(Qi)
- # The usual inner product on R^n.
- ip = lambda x, y: x.vector().inner_product(y.vector())
-
# The rank of the spin factor algebra is two, UNLESS we're in a
# one-dimensional ambient space (the rank is bounded by the
# ambient dimension).
return FiniteDimensionalEuclideanJordanAlgebra(field,
Qs,
rank=min(n,2),
- inner_product=ip)
+ inner_product=_usual_ip)