]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: combine several slow trace_inner_product() tests.
authorMichael Orlitzky <michael@orlitzky.com>
Fri, 23 Aug 2019 15:17:52 +0000 (11:17 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Fri, 23 Aug 2019 15:17:52 +0000 (11:17 -0400)
mjo/eja/eja_element.py

index d0d45900c97ccffbe16da756395ba2e6f1b8ddea..d787c5fc1366411fe6f6a3b549d8dbd285037d8b 100644 (file)
@@ -1176,21 +1176,18 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
         TESTS:
 
-        The trace inner product is commutative::
+        The trace inner product is commutative, bilinear, and satisfies
+        the Jordan axiom:
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element(); y = J.random_element()
-            sage: x.trace_inner_product(y) == y.trace_inner_product(x)
-            True
-
-        The trace inner product is bilinear::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
+            sage: x = J.random_element();
             sage: y = J.random_element()
             sage: z = J.random_element()
+            sage: # commutative
+            sage: x.trace_inner_product(y) == y.trace_inner_product(x)
+            True
+            sage: # bilinear
             sage: a = J.base_ring().random_element();
             sage: actual = (a*(x+z)).trace_inner_product(y)
             sage: expected = ( a*x.trace_inner_product(y) +
@@ -1202,15 +1199,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             ....:              a*x.trace_inner_product(z) )
             sage: actual == expected
             True
-
-        The trace inner product satisfies the compatibility
-        condition in the definition of a Euclidean Jordan algebra::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: # jordan axiom
             sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
             True