self.one.set_cache(self._cartesian_product_of_elements(ones))
self.rank.set_cache(sum(J.rank() for J in algebras))
+ def _monomial_to_generator(self, mon):
+ r"""
+ Convert a monomial index into a generator index.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja()
+
+ TESTS::
+
+ sage: J1 = random_eja(field=QQ, orthonormalize=False)
+ sage: J2 = random_eja(field=QQ, orthonormalize=False)
+ sage: J = cartesian_product([J1,J2])
+ sage: all( J.monomial(m)
+ ....: ==
+ ....: J.gens()[J._monomial_to_generator(m)]
+ ....: for m in J.basis().keys() )
+
+ """
+ # The superclass method indexes into a matrix, so we have to
+ # turn the tuples i and j into integers. This is easy enough
+ # given that the first coordinate of i and j corresponds to
+ # the factor, and the second coordinate corresponds to the
+ # index of the generator within that factor.
+ factor = mon[0]
+ idx_in_factor = mon[1]
+
+ offset = sum( f.dimension()
+ for f in self.cartesian_factors()[:factor] )
+ return offset + idx_in_factor
+
def product_on_basis(self, i, j):
r"""
Return the product of the monomials indexed by ``i`` and ``j``.
SETUP::
- sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
- ....: JordanSpinEJA,
+ sage: from mjo.eja.eja_algebra import (QuaternionHermitianEJA,
....: RealSymmetricEJA)
TESTS::
- sage: J1 = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
- sage: J2 = ComplexHermitianEJA(0,field=QQ,orthonormalize=False)
- sage: J3 = JordanSpinEJA(2,field=QQ,orthonormalize=False)
- sage: J = cartesian_product([J1,J2,J3])
+ sage: J1 = RealSymmetricEJA(1,field=QQ)
+ sage: J2 = QuaternionHermitianEJA(1,field=QQ)
+ sage: J = cartesian_product([J1,J2])
sage: x = sum(J.gens())
- sage: x*J.one()
- e(0, 0) + e(0, 1) + e(0, 2) + e(2, 0) + e(2, 1)
- sage: x*x
- 2*e(0, 0) + 2*e(0, 1) + 2*e(0, 2) + 2*e(2, 0) + 2*e(2, 1)
+ sage: x == J.one()
+ True
+ sage: x*x == x
+ True
"""
- factor = i[0]
- assert(j[0] == i[0])
- n = self.cartesian_factors()[factor].dimension()
-
- # The superclass method indexes into a matrix, so we have to
- # turn the tuples i and j into integers. This is easy enough
- # given that the first coordinate of i and j corresponds to
- # the factor, and the second coordinate corresponds to the
- # index of the generator within that factor. And of course
- # we should never be multiplying two elements from different
- # factors.
- l = n*factor + i[1]
- m = n*factor + j[1]
- super().product_on_basis(l, m)
+ l = self._monomial_to_generator(i)
+ m = self._monomial_to_generator(j)
+ return FiniteDimensionalEJA.product_on_basis(self, l, m)
def matrix_space(self):
r"""