]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
mjo/eja/eja_algebra.py: block-scoped "long time" tags
authorMichael Orlitzky <michael@orlitzky.com>
Fri, 22 Nov 2024 22:22:15 +0000 (17:22 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Fri, 22 Nov 2024 22:22:15 +0000 (17:22 -0500)
mjo/eja/eja_algebra.py

index adcc3436b1302e09cd20007d0525aee08e32a48f..85d466d708101f730957936f97bd591e747d99ff 100644 (file)
@@ -1660,10 +1660,11 @@ class EJA(CombinatorialFreeModule):
         Ensure that computing the rank actually works, since the ranks
         of all simple algebras are known and will be cached by default::
 
-            sage: J = random_eja()     # long time
-            sage: cached = J.rank()    # long time
-            sage: J.rank.clear_cache() # long time
-            sage: J.rank() == cached   # long time
+            sage: # long time
+            sage: J = random_eja()
+            sage: cached = J.rank()
+            sage: J.rank.clear_cache()
+            sage: J.rank() == cached
             True
 
         """
@@ -2350,10 +2351,11 @@ class OctonionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
 
     The 3-by-3 algebra satisfies the axioms of an EJA::
 
-        sage: OctonionHermitianEJA(3,                    # long time
-        ....:                      field=QQ,             # long time
-        ....:                      orthonormalize=False, # long time
-        ....:                      check_axioms=True)    # long time
+        sage: # long time
+        sage: OctonionHermitianEJA(3,
+        ....:                      field=QQ,
+        ....:                      orthonormalize=False,
+        ....:                      check_axioms=True)
         Euclidean Jordan algebra of dimension 27 over Rational Field
 
     After a change-of-basis, the 2-by-2 algebra has the same
@@ -2399,13 +2401,14 @@ class OctonionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
     We can actually construct the 27-dimensional Albert algebra,
     and we get the right unit element if we recompute it::
 
-        sage: J = OctonionHermitianEJA(3,                    # long time
-        ....:                          field=QQ,             # long time
-        ....:                          orthonormalize=False) # long time
-        sage: J.one.clear_cache()                            # long time
-        sage: J.one()                                        # long time
+        sage: # long time
+        sage: J = OctonionHermitianEJA(3,
+        ....:                          field=QQ,
+        ....:                          orthonormalize=False)
+        sage: J.one.clear_cache()
+        sage: J.one()
         b0 + b9 + b26
-        sage: J.one().to_matrix()                            # long time
+        sage: J.one().to_matrix()
         +----+----+----+
         | e0 | 0  | 0  |
         +----+----+----+
@@ -3072,13 +3075,14 @@ class CartesianProductEJA(EJA):
 
     The cached unit element is the same one that would be computed::
 
-        sage: J1 = random_eja()              # long time
-        sage: J2 = random_eja()              # long time
-        sage: J = cartesian_product([J1,J2]) # long time
-        sage: actual = J.one()               # long time
-        sage: J.one.clear_cache()            # long time
-        sage: expected = J.one()             # long time
-        sage: actual == expected             # long time
+        sage: # long time
+        sage: J1 = random_eja()
+        sage: J2 = random_eja()
+        sage: J = cartesian_product([J1,J2])
+        sage: actual = J.one()
+        sage: J.one.clear_cache()
+        sage: expected = J.one()
+        sage: actual == expected
         True
     """
     Element = CartesianProductEJAElement