-- Examples:
--
-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
--- >>> diagonal m
+-- >>> diagonal_part m
-- ((1,0,0),(0,5,0),(0,0,9))
--
-diagonal :: (Arity m, Ring.C a)
+diagonal_part :: (Arity m, Ring.C a)
=> Mat m m a
-> Mat m m a
-diagonal matrix =
+diagonal_part matrix =
construct lambda
where
lambda i j = if i == j then matrix !!! (i,j) else 0
+
+
+-- | Given a square @matrix@, return a new matrix of the same size
+-- containing only the on-diagonal and below-diagonal entries of
+-- @matrix@. The above-diagonal entries are set to zero.
+--
+-- Examples:
+--
+-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
+-- >>> lt_part m
+-- ((1,0,0),(4,5,0),(7,8,9))
+--
+lt_part :: (Arity m, Ring.C a)
+ => Mat m m a
+ -> Mat m m a
+lt_part matrix =
+ construct lambda
+ where
+ lambda i j = if i >= j then matrix !!! (i,j) else 0
+
+
+-- | Given a square @matrix@, return a new matrix of the same size
+-- containing only the below-diagonal entries of @matrix@. The on-
+-- and above-diagonal entries are set to zero.
+--
+-- Examples:
+--
+-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
+-- >>> lt_part_strict m
+-- ((0,0,0),(4,0,0),(7,8,0))
+--
+lt_part_strict :: (Arity m, Ring.C a)
+ => Mat m m a
+ -> Mat m m a
+lt_part_strict matrix =
+ construct lambda
+ where
+ lambda i j = if i > j then matrix !!! (i,j) else 0
+
+
+-- | Given a square @matrix@, return a new matrix of the same size
+-- containing only the on-diagonal and above-diagonal entries of
+-- @matrix@. The below-diagonal entries are set to zero.
+--
+-- Examples:
+--
+-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
+-- >>> ut_part m
+-- ((1,2,3),(0,5,6),(0,0,9))
+--
+ut_part :: (Arity m, Ring.C a)
+ => Mat m m a
+ -> Mat m m a
+ut_part = transpose . lt_part . transpose
+
+
+-- | Given a square @matrix@, return a new matrix of the same size
+-- containing only the above-diagonal entries of @matrix@. The on-
+-- and below-diagonal entries are set to zero.
+--
+-- Examples:
+--
+-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
+-- >>> ut_part_strict m
+-- ((0,2,3),(0,0,6),(0,0,0))
+--
+ut_part_strict :: (Arity m, Ring.C a)
+ => Mat m m a
+ -> Mat m m a
+ut_part_strict = transpose . lt_part_strict . transpose