prefix = prefixen[0]
basis_vectors = [ b.to_vector() for b in basis ]
- superalgebra_basis = [ self._superalgebra.from_vector(b)
- for b in basis_vectors ]
# If our superalgebra is a subalgebra of something else, then
# these vectors won't have the right coordinates for
# V.span_of_basis() unless we use V.from_vector() on them.
W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
- n = len(superalgebra_basis)
+ n = len(basis)
mult_table = [[W.zero() for i in range(n)] for j in range(n)]
for i in range(n):
for j in range(n):
- product = superalgebra_basis[i]*superalgebra_basis[j]
+ product = basis[i]*basis[j]
# product.to_vector() might live in a vector subspace
# if our parent algebra is already a subalgebra. We
# use V.from_vector() to make it "the right size" in
product_vector = V.from_vector(product.to_vector())
mult_table[i][j] = W.coordinate_vector(product_vector)
- natural_basis = tuple( b.natural_representation()
- for b in superalgebra_basis )
+ natural_basis = tuple( b.natural_representation() for b in basis )
self._vector_space = W