where
import Data.List (intercalate)
-import Data.Vector.Fixed as V
-import Data.Vector.Fixed.Boxed
+import qualified Data.Vector.Fixed as V
import Normed
newtype Vn a = Vn a
-instance (Show a, Vector v a) => Show (Vn (v a)) where
+instance (Show a, V.Vector v a) => Show (Vn (v a)) where
-- | Display vectors as ordinary tuples. This is poor practice, but
-- these results are primarily displayed interactively and
-- convenience trumps correctness (said the guy who insists his
show (Vn v1) =
"(" ++ (intercalate "," element_strings) ++ ")"
where
- v1l = toList v1
+ v1l = V.toList v1
element_strings = Prelude.map show v1l
-- >>> v1 == v3
-- False
--
-instance (Eq a, Vector v a, Vector v Bool) => Eq (Vn (v a)) where
+instance (Eq a, V.Vector v a, V.Vector v Bool) => Eq (Vn (v a)) where
(Vn v1) == (Vn v2) = V.foldl (&&) True (V.zipWith (==) v1 v2)
-- | The use of 'Num' here is of course incorrect (otherwise, we
-- wouldn't have to throw errors). But it's really nice to be able
-- to use normal addition/subtraction.
-instance (Num a, Vector v a) => Num (Vn (v a)) where
+instance (Num a, V.Vector v a) => Num (Vn (v a)) where
-- | Componentwise addition.
--
-- Examples:
instance Functor Vn where
fmap f (Vn v1) = Vn (f v1)
-instance (RealFloat a, Ord a, Vector v a) => Normed (Vn (v a)) where
+instance (RealFloat a, Ord a, V.Vector v a) => Normed (Vn (v a)) where
-- | The infinity norm. We don't use V.maximum here because it
-- relies on a type constraint that the vector be non-empty and I
-- don't know how to pattern match it away.
-- >>> dot v1 v2
-- 32
--
-dot :: (Num a, Vector v a) => Vn (v a) -> Vn (v a) -> a
+dot :: (Num a, V.Vector v a) => Vn (v a) -> Vn (v a) -> a
dot (Vn v1) (Vn v2) = V.sum $ V.zipWith (*) v1 v2
-- >>> angle v1 v2 == pi/2.0
-- True
--
-angle :: (RealFloat a, Vector v a) => Vn (v a) -> Vn (v a) -> a
+angle :: (RealFloat a, V.Vector v a) => Vn (v a) -> Vn (v a) -> a
angle v1 v2 =
acos theta
where
theta = (v1 `dot` v2) / norms
norms = (norm v1) * (norm v2)
+-- | Unsafe indexing.
+--
+-- Examples:
+--
+-- >>> let v1 = make3d (1,2,3)
+-- >>> v1 ! 2
+-- 3
+-- >>> v1 ! 3
+-- *** Exception: Data.Vector.Fixed.!: index out of range
+--
+(!) :: (V.Vector v a) => Vn (v a) -> Int -> a
+(!) (Vn v1) idx = v1 V.! idx
+
+
+-- | Safe indexing.
+-- Examples:
+--
+-- >>> let v1 = make3d (1,2,3)
+-- >>> v1 !? 2
+-- Just 3
+-- >>> v1 !? 3
+-- Nothing
+--
+(!?) :: (V.Vector v a) => Vn (v a) -> Int -> Maybe a
+(!?) v1@(Vn v2) idx
+ | idx < 0 || idx >= V.length v2 = Nothing
+ | otherwise = Just $ v1 ! idx
+
+
+-- * Two- and three-dimensional wrappers.
+--
+-- These two wrappers are instances of 'Vector', so they inherit all
+-- of the userful instances defined above. But, they use fixed
+-- constructors, so you can pattern match out the individual
+-- components.
+
+data Vec2D a = Vec2D a a
+type instance V.Dim Vec2D = V.N2
+instance V.Vector Vec2D a where
+ inspect (Vec2D x y) (V.Fun f) = f x y
+ construct = V.Fun Vec2D
+
+data Vec3D a = Vec3D a a a
+type instance V.Dim Vec3D = V.N3
+instance V.Vector Vec3D a where
+ inspect (Vec3D x y z) (V.Fun f) = f x y z
+ construct = V.Fun Vec3D
+
-- | Convenience function for creating 2d vectors.
--
-- >>> let v1 = make2d (1,2)
-- >>> v1
-- (1,2)
+-- >>> let Vn (Vec2D x y) = v1
+-- >>> (x,y)
+-- (1,2)
--
-make2d :: forall a. (a,a) -> Vn (Vec2 a)
-make2d (x,y) =
- Vn v1
- where
- v1 = vec $ con |> x |> y :: Vec2 a
+make2d :: forall a. (a,a) -> Vn (Vec2D a)
+make2d (x,y) = Vn (Vec2D x y)
-- | Convenience function for creating 3d vectors.
-- >>> let v1 = make3d (1,2,3)
-- >>> v1
-- (1,2,3)
+-- >>> let Vn (Vec3D x y z) = v1
+-- >>> (x,y,z)
+-- (1,2,3)
--
-make3d :: forall a. (a,a,a) -> Vn (Vec3 a)
-make3d (x,y,z) =
- Vn v1
- where
- v1 = vec $ con |> x |> y |> z :: Vec3 a
+make3d :: forall a. (a,a,a) -> Vn (Vec3D a)
+make3d (x,y,z) = Vn (Vec3D x y z)