--- /dev/null
+from sage.combinat.free_module import CombinatorialFreeModule
+from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
+from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.rings.all import AA, ZZ
+from sage.matrix.matrix_space import MatrixSpace
+from sage.misc.table import table
+
+class Octonion(IndexedFreeModuleElement):
+ def conjugate(self):
+ r"""
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ EXAMPLES::
+
+ sage: O = Octonions()
+ sage: x = sum(O.gens())
+ sage: x.conjugate()
+ e0 - e1 - e2 - e3 - e4 - e5 - e6 - e7
+
+ TESTS::
+
+ Conjugating twice gets you the original element::
+
+ sage: set_random_seed()
+ sage: O = Octonions()
+ sage: x = O.random_element()
+ sage: x.conjugate().conjugate() == x
+ True
+
+ """
+ C = MatrixSpace(ZZ,8).diagonal_matrix((1,-1,-1,-1,-1,-1,-1,-1))
+ return self.parent().from_vector(C*self.to_vector())
+
+ def real(self):
+ r"""
+ Return the real part of this octonion.
+
+ The real part of an octonion is its projection onto the span
+ of the first generator. In other words, the "first dimension"
+ is real and the others are imaginary.
+
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ EXAMPLES::
+
+ sage: O = Octonions()
+ sage: x = sum(O.gens())
+ sage: x.real()
+ e0
+
+ TESTS:
+
+ This method is idempotent::
+
+ sage: set_random_seed()
+ sage: O = Octonions()
+ sage: x = O.random_element()
+ sage: x.real().real() == x.real()
+ True
+
+ """
+ return (self + self.conjugate())/2
+
+ def imag(self):
+ r"""
+ Return the imaginary part of this octonion.
+
+ The imaginary part of an octonion is its projection onto the
+ orthogonal complement of the span of the first generator. In
+ other words, the "first dimension" is real and the others are
+ imaginary.
+
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ EXAMPLES::
+
+ sage: O = Octonions()
+ sage: x = sum(O.gens())
+ sage: x.imag()
+ e1 + e2 + e3 + e4 + e5 + e6 + e7
+
+ TESTS:
+
+ This method is idempotent::
+
+ sage: set_random_seed()
+ sage: O = Octonions()
+ sage: x = O.random_element()
+ sage: x.imag().imag() == x.imag()
+ True
+
+ """
+ return (self - self.conjugate())/2
+
+ def _norm_squared(self):
+ return (self*self.conjugate()).coefficient(0)
+
+ def norm(self):
+ r"""
+ Return the norm of this octonion.
+
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ EXAMPLES::
+
+ sage: O = Octonions()
+ sage: O.one().norm()
+ 1
+
+ TESTS:
+
+ The norm is nonnegative and belongs to the base field::
+
+ sage: set_random_seed()
+ sage: O = Octonions()
+ sage: n = O.random_element().norm()
+ sage: n >= 0 and n in O.base_ring()
+ True
+
+ The norm is homogeneous::
+
+ sage: set_random_seed()
+ sage: O = Octonions()
+ sage: x = O.random_element()
+ sage: alpha = O.base_ring().random_element()
+ sage: (alpha*x).norm() == alpha.abs()*x.norm()
+ True
+
+ """
+ return self._norm_squared().sqrt()
+
+ def inverse(self):
+ r"""
+ Return the inverse of this element if it exists.
+
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ EXAMPLES::
+
+ sage: O = Octonions()
+ sage: x = sum(O.gens())
+ sage: x*x.inverse() == O.one()
+ True
+
+ ::
+
+ sage: O = Octonions()
+ sage: O.one().inverse() == O.one()
+ True
+
+ TESTS::
+
+ sage: set_random_seed()
+ sage: O = Octonions()
+ sage: x = O.random_element()
+ sage: x.is_zero() or ( x*x.inverse() == O.one() )
+ True
+
+ """
+ if self.is_zero():
+ raise ValueError("zero is not invertible")
+ return self.conjugate()/self._norm_squared()
+
+class Octonions(CombinatorialFreeModule):
+ r"""
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ EXAMPLES::
+
+ sage: Octonions()
+ Octonion algebra with base ring Algebraic Real Field
+ sage: Octonions(field=QQ)
+ Octonion algebra with base ring Rational Field
+
+ """
+ def __init__(self,
+ field=AA,
+ prefix="e"):
+
+ # Not associative, not commutative
+ category = MagmaticAlgebras(field).FiniteDimensional()
+ category = category.WithBasis().Unital()
+
+ super().__init__(field,
+ range(8),
+ element_class=Octonion,
+ category=category,
+ prefix=prefix,
+ bracket=False)
+
+ # The product of each basis element is plus/minus another
+ # basis element that can simply be looked up on
+ # https://en.wikipedia.org/wiki/Octonion
+ e0, e1, e2, e3, e4, e5, e6, e7 = self.gens()
+ self._multiplication_table = (
+ (e0, e1, e2, e3, e4, e5, e6, e7),
+ (e1,-e0, e3,-e2, e5,-e4,-e7, e6),
+ (e2,-e3,-e0, e1, e6, e7,-e4,-e5),
+ (e3, e2,-e1,-e0, e7,-e6, e5,-e4),
+ (e4,-e5,-e6,-e7,-e0, e1, e2, e3),
+ (e5, e4,-e7, e6,-e1,-e0,-e3, e2),
+ (e6, e7, e4,-e5,-e2, e3,-e0,-e1),
+ (e7,-e6, e5, e4,-e3,-e2, e1,-e0),
+ )
+
+ def product_on_basis(self, i, j):
+ return self._multiplication_table[i][j]
+
+ def one_basis(self):
+ r"""
+ Return the monomial index (basis element) corresponding to the
+ octonion unit element.
+
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ TESTS:
+
+ This gives the correct unit element::
+
+ sage: set_random_seed()
+ sage: O = Octonions()
+ sage: x = O.random_element()
+ sage: x*O.one() == x and O.one()*x == x
+ True
+
+ """
+ return 0
+
+ def _repr_(self):
+ return ("Octonion algebra with base ring %s" % self.base_ring())
+
+ def multiplication_table(self):
+ """
+ Return a visual representation of this algebra's multiplication
+ table (on basis elements).
+
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+
+ EXAMPLES:
+
+ The multiplication table is what Wikipedia says it is::
+
+ sage: Octonions().multiplication_table()
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | * || e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
+ +====++====+=====+=====+=====+=====+=====+=====+=====+
+ | e0 || e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | e1 || e1 | -e0 | e3 | -e2 | e5 | -e4 | -e7 | e6 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | e2 || e2 | -e3 | -e0 | e1 | e6 | e7 | -e4 | -e5 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | e3 || e3 | e2 | -e1 | -e0 | e7 | -e6 | e5 | -e4 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | e4 || e4 | -e5 | -e6 | -e7 | -e0 | e1 | e2 | e3 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | e5 || e5 | e4 | -e7 | e6 | -e1 | -e0 | -e3 | e2 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | e6 || e6 | e7 | e4 | -e5 | -e2 | e3 | -e0 | -e1 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+ | e7 || e7 | -e6 | e5 | e4 | -e3 | -e2 | e1 | -e0 |
+ +----++----+-----+-----+-----+-----+-----+-----+-----+
+
+ """
+ n = self.dimension()
+ # Prepend the header row.
+ M = [["*"] + list(self.gens())]
+
+ # And to each subsequent row, prepend an entry that belongs to
+ # the left-side "header column."
+ M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
+ for j in range(n) ]
+ for i in range(n) ]
+
+ return table(M, header_row=True, header_column=True, frame=True)