]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: comment out DirectSumEJA for now (other things to worry about).
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 7 Dec 2020 20:33:03 +0000 (15:33 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 7 Dec 2020 20:33:03 +0000 (15:33 -0500)
mjo/eja/all.py
mjo/eja/eja_algebra.py

index c7d02a2990f4498a80fedde93f18e66438d97a2a..a3b524b509646ae3d0f482fa5f77abe407b3418a 100644 (file)
@@ -4,7 +4,6 @@ All imports from mjo.eja modules.
 
 from mjo.eja.eja_algebra import (BilinearFormEJA,
                                  ComplexHermitianEJA,
-                                 DirectSumEJA,
                                  HadamardEJA,
                                  JordanSpinEJA,
                                  QuaternionHermitianEJA,
index ea62da8ca796031bd99382c5886bb1091d145b78..f14218151d69db6fb90bdf2bec240a9506569f33 100644 (file)
@@ -2516,243 +2516,243 @@ class TrivialEJA(ConcreteEJA):
         # inappropriate for us.
         return cls(**kwargs)
 
-class DirectSumEJA(ConcreteEJA):
-    r"""
-    The external (orthogonal) direct sum of two other Euclidean Jordan
-    algebras. Essentially the Cartesian product of its two factors.
-    Every Euclidean Jordan algebra decomposes into an orthogonal
-    direct sum of simple Euclidean Jordan algebras, so no generality
-    is lost by providing only this construction.
-
-    SETUP::
-
-        sage: from mjo.eja.eja_algebra import (random_eja,
-        ....:                                  HadamardEJA,
-        ....:                                  RealSymmetricEJA,
-        ....:                                  DirectSumEJA)
-
-    EXAMPLES::
-
-        sage: J1 = HadamardEJA(2)
-        sage: J2 = RealSymmetricEJA(3)
-        sage: J = DirectSumEJA(J1,J2)
-        sage: J.dimension()
-        8
-        sage: J.rank()
-        5
-
-    TESTS:
-
-    The external direct sum construction is only valid when the two factors
-    have the same base ring; an error is raised otherwise::
-
-        sage: set_random_seed()
-        sage: J1 = random_eja(field=AA)
-        sage: J2 = random_eja(field=QQ,orthonormalize=False)
-        sage: J = DirectSumEJA(J1,J2)
-        Traceback (most recent call last):
-        ...
-        ValueError: algebras must share the same base field
-
-    """
-    def __init__(self, J1, J2, **kwargs):
-        if J1.base_ring() != J2.base_ring():
-            raise ValueError("algebras must share the same base field")
-        field = J1.base_ring()
-
-        self._factors = (J1, J2)
-        n1 = J1.dimension()
-        n2 = J2.dimension()
-        n = n1+n2
-        V = VectorSpace(field, n)
-        mult_table = [ [ V.zero() for j in range(i+1) ]
-                       for i in range(n) ]
-        for i in range(n1):
-            for j in range(i+1):
-                p = (J1.monomial(i)*J1.monomial(j)).to_vector()
-                mult_table[i][j] = V(p.list() + [field.zero()]*n2)
-
-        for i in range(n2):
-            for j in range(i+1):
-                p = (J2.monomial(i)*J2.monomial(j)).to_vector()
-                mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
-
-        # TODO: build the IP table here from the two constituent IP
-        # matrices (it'll be block diagonal, I think).
-        ip_table = [ [ field.zero() for j in range(i+1) ]
-                       for i in range(n) ]
-        super(DirectSumEJA, self).__init__(field,
-                                           mult_table,
-                                           ip_table,
-                                           check_axioms=False,
-                                           **kwargs)
-        self.rank.set_cache(J1.rank() + J2.rank())
-
-
-    def factors(self):
-        r"""
-        Return the pair of this algebra's factors.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  JordanSpinEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLES::
-
-            sage: J1 = HadamardEJA(2, field=QQ)
-            sage: J2 = JordanSpinEJA(3, field=QQ)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: J.factors()
-            (Euclidean Jordan algebra of dimension 2 over Rational Field,
-             Euclidean Jordan algebra of dimension 3 over Rational Field)
-
-        """
-        return self._factors
-
-    def projections(self):
-        r"""
-        Return a pair of projections onto this algebra's factors.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-            ....:                                  ComplexHermitianEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLES::
-
-            sage: J1 = JordanSpinEJA(2)
-            sage: J2 = ComplexHermitianEJA(2)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (pi_left, pi_right) = J.projections()
-            sage: J.one().to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: pi_left(J.one()).to_vector()
-            (1, 0)
-            sage: pi_right(J.one()).to_vector()
-            (1, 0, 0, 1)
-
-        """
-        (J1,J2) = self.factors()
-        m = J1.dimension()
-        n = J2.dimension()
-        V_basis = self.vector_space().basis()
-        # Need to specify the dimensions explicitly so that we don't
-        # wind up with a zero-by-zero matrix when we want e.g. a
-        # zero-by-two matrix (important for composing things).
-        P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
-        P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
-        pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
-        pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
-        return (pi_left, pi_right)
-
-    def inclusions(self):
-        r"""
-        Return the pair of inclusion maps from our factors into us.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (random_eja,
-            ....:                                  JordanSpinEJA,
-            ....:                                  RealSymmetricEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLES::
-
-            sage: J1 = JordanSpinEJA(3)
-            sage: J2 = RealSymmetricEJA(2)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (iota_left, iota_right) = J.inclusions()
-            sage: iota_left(J1.zero()) == J.zero()
-            True
-            sage: iota_right(J2.zero()) == J.zero()
-            True
-            sage: J1.one().to_vector()
-            (1, 0, 0)
-            sage: iota_left(J1.one()).to_vector()
-            (1, 0, 0, 0, 0, 0)
-            sage: J2.one().to_vector()
-            (1, 0, 1)
-            sage: iota_right(J2.one()).to_vector()
-            (0, 0, 0, 1, 0, 1)
-            sage: J.one().to_vector()
-            (1, 0, 0, 1, 0, 1)
-
-        TESTS:
-
-        Composing a projection with the corresponding inclusion should
-        produce the identity map, and mismatching them should produce
-        the zero map::
-
-            sage: set_random_seed()
-            sage: J1 = random_eja()
-            sage: J2 = random_eja()
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (iota_left, iota_right) = J.inclusions()
-            sage: (pi_left, pi_right) = J.projections()
-            sage: pi_left*iota_left == J1.one().operator()
-            True
-            sage: pi_right*iota_right == J2.one().operator()
-            True
-            sage: (pi_left*iota_right).is_zero()
-            True
-            sage: (pi_right*iota_left).is_zero()
-            True
-
-        """
-        (J1,J2) = self.factors()
-        m = J1.dimension()
-        n = J2.dimension()
-        V_basis = self.vector_space().basis()
-        # Need to specify the dimensions explicitly so that we don't
-        # wind up with a zero-by-zero matrix when we want e.g. a
-        # two-by-zero matrix (important for composing things).
-        I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
-        I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
-        iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
-        iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
-        return (iota_left, iota_right)
-
-    def inner_product(self, x, y):
-        r"""
-        The standard Cartesian inner-product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        inner-products from the subalgebras.
-
-        SETUP::
-
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  QuaternionHermitianEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLE::
-
-            sage: J1 = HadamardEJA(3,field=QQ)
-            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: x1 = J1.one()
-            sage: x2 = x1
-            sage: y1 = J2.one()
-            sage: y2 = y1
-            sage: x1.inner_product(x2)
-            3
-            sage: y1.inner_product(y2)
-            2
-            sage: J.one().inner_product(J.one())
-            5
-
-        """
-        (pi_left, pi_right) = self.projections()
-        x1 = pi_left(x)
-        x2 = pi_right(x)
-        y1 = pi_left(y)
-        y2 = pi_right(y)
-
-        return (x1.inner_product(y1) + x2.inner_product(y2))
+class DirectSumEJA(ConcreteEJA):
+    r"""
+    The external (orthogonal) direct sum of two other Euclidean Jordan
+    algebras. Essentially the Cartesian product of its two factors.
+    Every Euclidean Jordan algebra decomposes into an orthogonal
+    direct sum of simple Euclidean Jordan algebras, so no generality
+    is lost by providing only this construction.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (random_eja,
+        ....:                                  HadamardEJA,
+        ....:                                  RealSymmetricEJA,
+        ....:                                  DirectSumEJA)
+
+    EXAMPLES::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = RealSymmetricEJA(3)
+        sage: J = DirectSumEJA(J1,J2)
+        sage: J.dimension()
+        8
+        sage: J.rank()
+        5
+
+    TESTS:
+
+    The external direct sum construction is only valid when the two factors
+    have the same base ring; an error is raised otherwise::
+
+        sage: set_random_seed()
+        sage: J1 = random_eja(field=AA)
+        sage: J2 = random_eja(field=QQ,orthonormalize=False)
+        sage: J = DirectSumEJA(J1,J2)
+        Traceback (most recent call last):
+        ...
+        ValueError: algebras must share the same base field
+
+    """
+    def __init__(self, J1, J2, **kwargs):
+        if J1.base_ring() != J2.base_ring():
+            raise ValueError("algebras must share the same base field")
+        field = J1.base_ring()
+
+        self._factors = (J1, J2)
+        n1 = J1.dimension()
+        n2 = J2.dimension()
+        n = n1+n2
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.zero() for j in range(i+1) ]
+                       for i in range(n) ]
+        for i in range(n1):
+            for j in range(i+1):
+                p = (J1.monomial(i)*J1.monomial(j)).to_vector()
+                mult_table[i][j] = V(p.list() + [field.zero()]*n2)
+
+        for i in range(n2):
+            for j in range(i+1):
+                p = (J2.monomial(i)*J2.monomial(j)).to_vector()
+                mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
+
+        # TODO: build the IP table here from the two constituent IP
+        # matrices (it'll be block diagonal, I think).
+        ip_table = [ [ field.zero() for j in range(i+1) ]
+                       for i in range(n) ]
+        super(DirectSumEJA, self).__init__(field,
+                                           mult_table,
+                                           ip_table,
+                                           check_axioms=False,
+                                           **kwargs)
+        self.rank.set_cache(J1.rank() + J2.rank())
+
+
+    def factors(self):
+        r"""
+        Return the pair of this algebra's factors.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2, field=QQ)
+            sage: J2 = JordanSpinEJA(3, field=QQ)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: J.factors()
+            (Euclidean Jordan algebra of dimension 2 over Rational Field,
+             Euclidean Jordan algebra of dimension 3 over Rational Field)
+
+        """
+        return self._factors
+
+    def projections(self):
+        r"""
+        Return a pair of projections onto this algebra's factors.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = JordanSpinEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (pi_left, pi_right) = J.projections()
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+            sage: pi_left(J.one()).to_vector()
+            (1, 0)
+            sage: pi_right(J.one()).to_vector()
+            (1, 0, 0, 1)
+
+        """
+        (J1,J2) = self.factors()
+        m = J1.dimension()
+        n = J2.dimension()
+        V_basis = self.vector_space().basis()
+        # Need to specify the dimensions explicitly so that we don't
+        # wind up with a zero-by-zero matrix when we want e.g. a
+        # zero-by-two matrix (important for composing things).
+        P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
+        P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
+        pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
+        pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
+        return (pi_left, pi_right)
+
+    def inclusions(self):
+        r"""
+        Return the pair of inclusion maps from our factors into us.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = JordanSpinEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (iota_left, iota_right) = J.inclusions()
+            sage: iota_left(J1.zero()) == J.zero()
+            True
+            sage: iota_right(J2.zero()) == J.zero()
+            True
+            sage: J1.one().to_vector()
+            (1, 0, 0)
+            sage: iota_left(J1.one()).to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: J2.one().to_vector()
+            (1, 0, 1)
+            sage: iota_right(J2.one()).to_vector()
+            (0, 0, 0, 1, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 0, 1, 0, 1)
+
+        TESTS:
+
+        Composing a projection with the corresponding inclusion should
+        produce the identity map, and mismatching them should produce
+        the zero map::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (iota_left, iota_right) = J.inclusions()
+            sage: (pi_left, pi_right) = J.projections()
+            sage: pi_left*iota_left == J1.one().operator()
+            True
+            sage: pi_right*iota_right == J2.one().operator()
+            True
+            sage: (pi_left*iota_right).is_zero()
+            True
+            sage: (pi_right*iota_left).is_zero()
+            True
+
+        """
+        (J1,J2) = self.factors()
+        m = J1.dimension()
+        n = J2.dimension()
+        V_basis = self.vector_space().basis()
+        # Need to specify the dimensions explicitly so that we don't
+        # wind up with a zero-by-zero matrix when we want e.g. a
+        # two-by-zero matrix (important for composing things).
+        I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
+        I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
+        iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
+        iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
+        return (iota_left, iota_right)
+
+    def inner_product(self, x, y):
+        r"""
+        The standard Cartesian inner-product.
+
+        We project ``x`` and ``y`` onto our factors, and add up the
+        inner-products from the subalgebras.
+
+        SETUP::
+
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLE::
+
+            sage: J1 = HadamardEJA(3,field=QQ)
+            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: x1 = J1.one()
+            sage: x2 = x1
+            sage: y1 = J2.one()
+            sage: y2 = y1
+            sage: x1.inner_product(x2)
+            3
+            sage: y1.inner_product(y2)
+            2
+            sage: J.one().inner_product(J.one())
+            5
+
+        """
+        (pi_left, pi_right) = self.projections()
+        x1 = pi_left(x)
+        x2 = pi_right(x)
+        y1 = pi_left(y)
+        y2 = pi_right(y)
+
+        return (x1.inner_product(y1) + x2.inner_product(y2))