return matrix([[uniform(-10, 10)*int(i == j) for i in range(dims)]
for j in range(dims)])
+
+def _random_skew_symmetric_matrix(dims):
+ """
+ Generate a random skew-symmetrix (``dims``-by-``dims``) matrix.
+
+ Examples
+ --------
+
+ >>> A = _random_skew_symmetric_matrix(randint(1, 10))
+ >>> norm(A + A.trans()) < options.ABS_TOL
+ True
+
+ """
+ strict_ut = [[uniform(-10, 10)*int(i < j) for i in range(dims)]
+ for j in range(dims)]
+
+ strict_ut = matrix(strict_ut, (dims,dims))
+ return (strict_ut - strict_ut.trans())
+
+
+def _random_lyapunov_like_icecream(dims):
+ """
+ Generate a random Lyapunov-like matrix over the ice-cream cone in
+ ``dims`` dimensions.
+ """
+ a = matrix([uniform(-10,10)], (1,1))
+ b = matrix([uniform(-10,10) for idx in range(dims-1)], (dims-1, 1))
+ D = _random_skew_symmetric_matrix(dims-1) + a*identity(dims-1)
+ row1 = append_col(a, b.trans())
+ row2 = append_col(b, D)
+ return append_row(row1,row2)
+
+
def _random_orthant_params():
"""
Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
self.assertTrue(game.solution().game_value() >= -options.ABS_TOL)
- def test_lyapunov_orthant(self):
+ def assert_lyapunov_works(self, L, K, e1, e2):
"""
- Test that a Lyapunov game on the nonnegative orthant works.
+ Check that Lyapunov games act the way we expect.
"""
- (L, K, e1, e2) = _random_orthant_params()
-
- # Ignore that L, we need a diagonal (Lyapunov-like) one.
- # (And we don't need to transpose those.)
- L = _random_diagonal_matrix(K.dimension())
game = SymmetricLinearGame(L, K, e1, e2)
soln = game.solution()
# The dual game's value should always equal the primal's.
dualsoln = game.dual().solution()
self.assert_within_tol(dualsoln.game_value(), soln.game_value())
+
+
+ def test_lyapunov_orthant(self):
+ """
+ Test that a Lyapunov game on the nonnegative orthant works.
+ """
+ (L, K, e1, e2) = _random_orthant_params()
+
+ # Ignore that L, we need a diagonal (Lyapunov-like) one.
+ # (And we don't need to transpose those.)
+ L = _random_diagonal_matrix(K.dimension())
+
+ self.assert_lyapunov_works(L, K, e1, e2)
+
+
+ def test_lyapunov_icecream(self):
+ """
+ Test that a Lyapunov game on the ice-cream cone works.
+ """
+ (L, K, e1, e2) = _random_icecream_params()
+
+ # Ignore that L, we need a diagonal (Lyapunov-like) one.
+ # (And we don't need to transpose those.)
+ L = _random_lyapunov_like_icecream(K.dimension())
+
+ self.assert_lyapunov_works(L, K, e1, e2)