import Comparisons
import Cube
import FunctionValues
+import Misc (all_equal)
import Tests.FunctionValues ()
import Tetrahedron (b0, b1, b2, b3, c, fv,
v0, v1, v2, v3, volume)
+-- | The function values at the interior should be the same for all tetrahedra.
+prop_interior_values_all_identical :: Cube -> Bool
+prop_interior_values_all_identical cube =
+ all_equal [i0, i1, i2, i3, i4, i5, i6, i7, i8,
+ i9, i10, i11, i12, i13, i14, i15, i16,
+ i17, i18, i19, i20, i21, i22, i23]
+ where
+ i0 = eval (Tetrahedron.fv (tetrahedron0 cube)) $ I
+ i1 = eval (Tetrahedron.fv (tetrahedron1 cube)) $ I
+ i2 = eval (Tetrahedron.fv (tetrahedron2 cube)) $ I
+ i3 = eval (Tetrahedron.fv (tetrahedron3 cube)) $ I
+ i4 = eval (Tetrahedron.fv (tetrahedron4 cube)) $ I
+ i5 = eval (Tetrahedron.fv (tetrahedron5 cube)) $ I
+ i6 = eval (Tetrahedron.fv (tetrahedron6 cube)) $ I
+ i7 = eval (Tetrahedron.fv (tetrahedron7 cube)) $ I
+ i8 = eval (Tetrahedron.fv (tetrahedron8 cube)) $ I
+ i9 = eval (Tetrahedron.fv (tetrahedron9 cube)) $ I
+ i10 = eval (Tetrahedron.fv (tetrahedron10 cube)) $ I
+ i11 = eval (Tetrahedron.fv (tetrahedron11 cube)) $ I
+ i12 = eval (Tetrahedron.fv (tetrahedron12 cube)) $ I
+ i13 = eval (Tetrahedron.fv (tetrahedron13 cube)) $ I
+ i14 = eval (Tetrahedron.fv (tetrahedron14 cube)) $ I
+ i15 = eval (Tetrahedron.fv (tetrahedron15 cube)) $ I
+ i16 = eval (Tetrahedron.fv (tetrahedron16 cube)) $ I
+ i17 = eval (Tetrahedron.fv (tetrahedron17 cube)) $ I
+ i18 = eval (Tetrahedron.fv (tetrahedron18 cube)) $ I
+ i19 = eval (Tetrahedron.fv (tetrahedron19 cube)) $ I
+ i20 = eval (Tetrahedron.fv (tetrahedron20 cube)) $ I
+ i21 = eval (Tetrahedron.fv (tetrahedron21 cube)) $ I
+ i22 = eval (Tetrahedron.fv (tetrahedron22 cube)) $ I
+ i23 = eval (Tetrahedron.fv (tetrahedron23 cube)) $ I
+
+
-- | We know what (c t6 2 1 0 0) should be from Sorokina and Zeilfelder, p. 87.
-- This test checks the rotation works as expected.
prop_c_tilde_2100_rotation_correct :: Cube -> Bool