sage: actual == expected
True
+ The left-multiplication-by operator for elements in the subalgebra
+ works like it does in the superalgebra, even if we orthonormalize
+ our basis::
+
+ sage: set_random_seed()
+ sage: x = random_eja(AA).random_element()
+ sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+ sage: y = A.random_element()
+ sage: y.operator()(A.one()) == y
+ True
+
"""
def superalgebra_element(self):
return self.from_vector(coords)
- def one_basis(self):
- """
- Return the basis-element-index of this algebra's unit element.
- """
- return 0
-
def one(self):
"""
Return the multiplicative identity element of this algebra.
The superclass method computes the identity element, which is
- beyond overkill in this case: the algebra identity should be our
- first basis element. We implement this via :meth:`one_basis`
- because that method can optionally be used by other parts of the
- category framework.
+ beyond overkill in this case: the superalgebra identity
+ restricted to this algebra is its identity. Note that we can't
+ count on the first basis element being the identity -- it migth
+ have been scaled if we orthonormalized the basis.
SETUP::
TESTS:
- The identity element acts like the identity::
+ The identity element acts like the identity over the rationals::
sage: set_random_seed()
- sage: J = random_eja().random_element().subalgebra_generated_by()
- sage: x = J.random_element()
- sage: J.one()*x == x and x*J.one() == x
+ sage: x = random_eja().random_element()
+ sage: A = x.subalgebra_generated_by()
+ sage: x = A.random_element()
+ sage: A.one()*x == x and x*A.one() == x
True
- The matrix of the unit element's operator is the identity::
+ The identity element acts like the identity over the algebraic
+ reals with an orthonormal basis::
sage: set_random_seed()
- sage: J = random_eja().random_element().subalgebra_generated_by()
- sage: actual = J.one().operator().matrix()
- sage: expected = matrix.identity(J.base_ring(), J.dimension())
+ sage: x = random_eja(AA).random_element()
+ sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+ sage: x = A.random_element()
+ sage: A.one()*x == x and x*A.one() == x
+ True
+
+ The matrix of the unit element's operator is the identity over
+ the rationals::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: A = x.subalgebra_generated_by()
+ sage: actual = A.one().operator().matrix()
+ sage: expected = matrix.identity(A.base_ring(), A.dimension())
sage: actual == expected
True
+
+ The matrix of the unit element's operator is the identity over
+ the algebraic reals with an orthonormal basis::
+
+ sage: set_random_seed()
+ sage: x = random_eja(AA).random_element()
+ sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+ sage: actual = A.one().operator().matrix()
+ sage: expected = matrix.identity(A.base_ring(), A.dimension())
+ sage: actual == expected
+ True
+
"""
if self.dimension() == 0:
return self.zero()
else:
- return self.monomial(self.one_basis())
+ sa_one = self.superalgebra().one().to_vector()
+ sa_coords = self.vector_space().coordinate_vector(sa_one)
+ return self.from_vector(sa_coords)
def natural_basis_space(self):