sage: from mjo.eja.eja_algebra import (random_eja,
....: CartesianProductEJA,
+ ....: ComplexHermitianEJA,
....: HadamardEJA,
....: JordanSpinEJA,
....: RealSymmetricEJA)
| b2 || 0 | 0 | b2 |
+----++----+----+----+
+ The "matrix space" of a Cartesian product always consists of
+ ordered pairs (or triples, or...) whose components are the
+ matrix spaces of its factors::
+
+ sage: J1 = HadamardEJA(2)
+ sage: J2 = ComplexHermitianEJA(2)
+ sage: J = cartesian_product([J1,J2])
+ sage: J.matrix_space()
+ The Cartesian product of (Full MatrixSpace of 2 by 1 dense
+ matrices over Algebraic Real Field, Module of 2 by 2 matrices
+ with entries in Algebraic Field over the scalar ring Algebraic
+ Real Field)
+ sage: J.one().to_matrix()[0]
+ [1]
+ [1]
+ sage: J.one().to_matrix()[1]
+ +---+---+
+ | 1 | 0 |
+ +---+---+
+ | 0 | 1 |
+ +---+---+
+
TESTS:
All factors must share the same base field::
sage: expected = J.one() # long time
sage: actual == expected # long time
True
-
"""
def __init__(self, factors, **kwargs):
m = len(factors)
if associative: category = category.Associative()
category = category.join([category, category.CartesianProducts()])
- # Compute my matrix space. This category isn't perfect, but
- # is good enough for what we need to do.
+ # Compute my matrix space. We don't simply use the
+ # ``cartesian_product()`` functor here because it acts
+ # differently on SageMath MatrixSpaces and our custom
+ # MatrixAlgebras, which are CombinatorialFreeModules. We
+ # always want the result to be represented (and indexed) as an
+ # ordered tuple. This category isn't perfect, but is good
+ # enough for what we need to do.
MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
MS_cat = MS_cat.Unital().CartesianProducts()
MS_factors = tuple( J.matrix_space() for J in factors )
return cartesian_product.symbol.join("%s" % factor
for factor in self._sets)
- def matrix_space(self):
- r"""
- Return the space that our matrix basis lives in as a Cartesian
- product.
-
- We don't simply use the ``cartesian_product()`` functor here
- because it acts differently on SageMath MatrixSpaces and our
- custom MatrixAlgebras, which are CombinatorialFreeModules. We
- always want the result to be represented (and indexed) as
- an ordered tuple.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
- ....: HadamardEJA,
- ....: OctonionHermitianEJA,
- ....: RealSymmetricEJA)
-
- EXAMPLES::
-
- sage: J1 = HadamardEJA(1)
- sage: J2 = RealSymmetricEJA(2)
- sage: J = cartesian_product([J1,J2])
- sage: J.matrix_space()
- The Cartesian product of (Full MatrixSpace of 1 by 1 dense
- matrices over Algebraic Real Field, Full MatrixSpace of 2
- by 2 dense matrices over Algebraic Real Field)
-
- ::
-
- sage: J1 = ComplexHermitianEJA(1)
- sage: J2 = ComplexHermitianEJA(1)
- sage: J = cartesian_product([J1,J2])
- sage: J.one().to_matrix()[0]
- +---+
- | 1 |
- +---+
- sage: J.one().to_matrix()[1]
- +---+
- | 1 |
- +---+
-
- ::
-
- sage: J1 = OctonionHermitianEJA(1)
- sage: J2 = OctonionHermitianEJA(1)
- sage: J = cartesian_product([J1,J2])
- sage: J.one().to_matrix()[0]
- +----+
- | e0 |
- +----+
- sage: J.one().to_matrix()[1]
- +----+
- | e0 |
- +----+
-
- """
- return super().matrix_space()
-
@cached_method
def cartesian_projection(self, i):