return (self + (-other))
+ def is_zero(self):
+ r"""
+ Return whether or not this map is the zero operator.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
+ sage: from mjo.eja.eja_algebra import (random_eja,
+ ....: JordanSpinEJA,
+ ....: RealSymmetricEJA)
+
+ EXAMPLES::
+
+ sage: J1 = JordanSpinEJA(2)
+ sage: J2 = RealSymmetricEJA(2)
+ sage: R = J1.base_ring()
+ sage: M = matrix(R, [ [0, 0],
+ ....: [0, 0],
+ ....: [0, 0] ])
+ sage: L = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,J2,M)
+ sage: L.is_zero()
+ True
+ sage: M = matrix(R, [ [0, 0],
+ ....: [0, 1],
+ ....: [0, 0] ])
+ sage: L = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,J2,M)
+ sage: L.is_zero()
+ False
+
+ TESTS:
+
+ The left-multiplication-by-zero operation on a given algebra
+ is its zero map::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.zero().operator().is_zero()
+ True
+
+ """
+ return self.matrix().is_zero()
+
+
def inverse(self):
"""
Return the inverse of this operator, if it exists.