Return the spectral decomposition of this operator as a list of
(eigenvalue, orthogonal projector) pairs.
+ This is the unique spectral decomposition, up to the order of
+ the projection operators, with distinct eigenvalues. So, the
+ projections are generally onto subspaces of dimension greater
+ than one.
+
SETUP::
sage: from mjo.eja.eja_algebra import RealSymmetricEJA
True
sage: P1^2 == P1
True
- sage: c0 = P0(A.one())
- sage: c1 = P1(A.one())
- sage: c0.inner_product(c1) == 0
- True
- sage: c0 + c1 == A.one()
- True
- sage: c0.is_idempotent()
+ sage: P0*P1 == A.zero().operator()
True
- sage: c1.is_idempotent()
+ sage: P1*P0 == A.zero().operator()
True
"""