]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: remove EJA tests from the operator spectral decomposition.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 14 Oct 2019 13:03:38 +0000 (09:03 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 14 Oct 2019 13:03:38 +0000 (09:03 -0400)
The operator spectral decomposition is the usual linear algebra one,
so it doesn't make sense to test EJA results there.

mjo/eja/eja_operator.py

index 41d68560524e9394a97dc6ff3ecbaf19e27cd06a..6e22d367c6faa55a4f1461925ce62b04aaedfef1 100644 (file)
@@ -524,6 +524,11 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map):
         Return the spectral decomposition of this operator as a list of
         (eigenvalue, orthogonal projector) pairs.
 
+        This is the unique spectral decomposition, up to the order of
+        the projection operators, with distinct eigenvalues. So, the
+        projections are generally onto subspaces of dimension greater
+        than one.
+
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
@@ -547,15 +552,9 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map):
             True
             sage: P1^2 == P1
             True
-            sage: c0 = P0(A.one())
-            sage: c1 = P1(A.one())
-            sage: c0.inner_product(c1) == 0
-            True
-            sage: c0 + c1 == A.one()
-            True
-            sage: c0.is_idempotent()
+            sage: P0*P1 == A.zero().operator()
             True
-            sage: c1.is_idempotent()
+            sage: P1*P0 == A.zero().operator()
             True
 
         """