]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: fix incorrect usage of "Jordan axiom" -- I meant "associativity."
authorMichael Orlitzky <michael@orlitzky.com>
Tue, 27 Aug 2019 14:30:16 +0000 (10:30 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Tue, 27 Aug 2019 14:30:16 +0000 (10:30 -0400)
mjo/eja/eja_algebra.py
mjo/eja/eja_element.py

index 3f2127d7df9b811a599ba1da01b7b100ab0a5573..02ed966540132c07af408a1a9fb4e6eebc220c31 100644 (file)
@@ -406,8 +406,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         EXAMPLES:
 
-        Our inner product satisfies the Jordan axiom, which is also
-        referred to as "associativity" for a symmetric bilinear form::
+        Our inner product is "associative," which means the following for
+        a symmetric bilinear form::
 
             sage: set_random_seed()
             sage: J = random_eja()
index d9b6eb12fe27363721763fc1e6ccb60c7f98aabd..070501852ae4efa8d6845d74240d4495695f42a9 100644 (file)
@@ -1162,8 +1162,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
         TESTS:
 
-        The trace inner product is commutative, bilinear, and satisfies
-        the Jordan axiom:
+        The trace inner product is commutative, bilinear, and associative::
 
             sage: set_random_seed()
             sage: J = random_eja()
@@ -1183,7 +1182,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             ....:              a*x.trace_inner_product(z) )
             sage: actual == expected
             True
-            sage: # jordan axiom
+            sage: # associative
             sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
             True