The set of all bounded linear operators from $V$ to $W$ is
$\boundedops[W]{V}$. If $W = V$, then we write $\boundedops{V}$
- instead.
+ instead. If you have matrices instead, then the general linear
+ group of $n$-by-$n$ matrices with entries in $\mathbb{F}$ is
+ $\GL{n}{\mathbb{F}}$.
If you want to solve a system of equations, try Cramer's
rule~\cite{ehrenborg}. Or at least the reduced row-echelon form of
\fi
+% The general linear group of square matrices whose size is the first
+% argument and whose entries come from the second argument.
+\newcommand*{\GL}[2]{\operatorname{GL}_{#1}\of{#2}}
+
\fi