]> gitweb.michael.orlitzky.com - dead/census-tools.git/commitdiff
Change MINIMUM, MAXIMUM to MINIMIZE, MAXIMIZE respectively.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 26 Apr 2010 19:40:38 +0000 (15:40 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 26 Apr 2010 19:40:38 +0000 (15:40 -0400)
Add all useful lp_solve properties as properties of the LinearProgram class.
Create the lp_solve instance of a linear program on-demand.
Cache changes to the linear program until needed.

src/LinearProgramming.py

index 7f274093c73a874f0ceef437bf456aa1ac65c11f..71d02ffca6df6baef185d47ecfa62551201c7acb 100644 (file)
@@ -15,25 +15,306 @@ site.addsitedir(os.path.dirname(os.path.abspath(sys.argv[0])) + LP_SOLVE_PATH)
 
 from lp_solve import *
 
-MINIMUM = 0
-MAXIMUM = 1
+
+# Constants representing the two types of linear programs.
+# MINIMIZE means that we would like to minimize the objective
+# function, and MAXIMIZE means that we would like to maximize it.
+MINIMIZE = 0
+MAXIMIZE = 1
+
 
 class LinearProgram(object):
     """
-    Represents an instance of an lp_solve linear program.    
+    Represents an instance of an lp_solve linear program.
+    The actual lp_solve linear program is only created when it
+    is needed, and modifications to it are cached beforehand.
     """
-    
+
+
+    def get_row_count(self):
+        """
+        Return the number of rows in the constraint matrix.
+        """
+        return len(self.constraint_matrix)
+
+
+    def get_column_count(self):
+        """
+        Return the number of columns in the constraint matrix.
+        If we don't have any rows yet, claim zero columns as well.
+        """
+        if self.get_row_count() == 0:
+            return 0
+        else:
+            return len(self.constraint_matrix[0])
+
+
+
+    @property
+    def type(self):
+        """
+        A property representing the type of linear program, either
+        MINIMIZE or MAXIMIZE.
+        """
+        return self._type
+
+
+    def type(self, type):
+        if type == MINIMIZE:
+            self._type = MINIMIZE
+            if self._lp != None:
+                lpsolve('set_minim', self._lp)
+        else:
+            self._type = MAXIMIZE
+            if self._lp != None:
+                lpsolve('set_maxim', self._lp)
+
+
+
+    @property
+    def objective_coefficients(self):
+        return self._objective_coefficients
+
+
+    @objective_coefficients.setter
+    def objective_coefficients(self, value):
+        self._objective_coefficients = value
+
+        if self._lp != None:
+            lpsolve('set_obj_fn',
+                    self._lp,
+                    self._objective_coefficients)
+
+
+
+    @property
+    def constraint_matrix(self):
+        return self._constraint_matrix
+
+    @constraint_matrix.setter
+    def constraint_matrix(self, value):
+        self._constraint_matrix = value
+
+        if self._lp != None:
+            lpsolve('set_mat', self._lp, value)
+
+
+
+    @property
+    def rhs(self):
+        return self._rhs
+
+    @rhs.setter
+    def rhs(self, value):
+        self._rhs = value
+
+        if self._lp != None:
+            lpsolve('set_rh_vec', self._lp, self._rhs)
+
+
+
+    @property
+    def inequalities(self):
+        return self._inequalities
+
+    @inequalities.setter
+    def inequalities(self, value):
+        self._inequalities = value
+
+        if self._lp != None:
+            for i in range(self.get_row_count()):
+                lpsolve('set_constr_type', self._lp, i+1, value[i])
+
+
+    @property
+    def solution_lower_bounds(self):
+        return self._solution_lower_bounds
+
+    @solution_lower_bounds.setter
+    def solution_lower_bounds(self, value):
+        if len(value) != self.get_column_count():
+            return
+
+        self._solution_lower_bounds = value
+
+        if self._lp != None:
+            for i in range(self.get_column_count()):
+                lpsolve('set_lowbo', self._lp, i+1, value[i])
+
+
+
+    @property
+    def solution_upper_bounds(self):
+        return self._solution_upper_bounds
+
+
+    @solution_upper_bounds.setter
+    def solution_upper_bounds(self, value):
+        if len(value) != self.get_column_count():
+            return
+
+        self._solution_upper_bounds = value
+
+        if self._lp != None:
+            for i in range(self.get_column_count()):
+                lpsolve('set_upbo', self._lp, i+1, value[i])
+
+
+
+    @property
+    def integer_variables(self):
+        """
+        A vector containing the indices of any solution variables
+        which must be integers.
+        """
+        return self._integer_variables
+
+    @integer_variables.setter
+    def integer_variables(self, value):
+        self._integer_variables = value
+
+        if self._lp != None:
+            for i in range(len(value)):
+                lpsolve('set_int', self._lp, value[i], 1)
+
+
+
+    def make_all_variables_integers(self):
+        """
+        Force all solution variables to be integers. This is achieved
+        by filling the integer_variables vector with all possible
+        indices.
+        """
+        ivs = []
+
+        for i in range(self.get_column_count()):
+            ivs.append(i+1)
+            if self._lp != None:
+                lpsolve('set_int', self._lp, i+1, 1)
+
+        self.integer_variables = ivs
+
+
+
+    @property
+    def scale_mode(self):
+        """
+        The scaling mode used for handling floating point numbers.
+        See <http://lpsolve.sourceforge.net/5.5/scaling.htm> for more
+        information.
+        """
+        return self._scale_mode
+
+
+    @scale_mode.setter
+    def scale_mode(self, value):
+        self._scale_mode = value
+
+        if self._lp != None:
+            lpsolve('set_scaling', self._lp, value)
+
+
+
     def __init__(self):
-        self.objective_function_coefficients = []
-        self.constraint_matrix = []
-        self.rhs = []
-        self.inequalities = []
+        """
+        Initialize the object, setting all of the properties
+        either empty or to sane defaults.
+
+        The _lp variable is set to None, initially. All of the
+        property setters will test for _lp == None, and will refuse
+        to make calls to lp_solve if that is the case. A new instance
+        of an lp_solve linear program will be created (and stored in
+        the _lp variable) on demand.
+
+        If the _lp variable is *not* None, the property setters will
+        make calls to lp_solve, updating the pre-existing linear program.
+        """
+
+        self._lp = None
+        self._objective_coefficients = []
+        self._constraint_matrix = []
+        self._rhs = []
+        self._inequalities = []
+        self._integer_variables = []
+        self._solution_lower_bounds = []
+        self._solution_upper_bounds = []
+        self._scale_mode = 0
+        self._type = MINIMIZE
+
+
+    def set_all_lp_properties(self):
+        """
+        Re-set all linear program properties. After a new linear
+        program is created, it will be 'empty'. We already have
+        its properties stored in our member variables, however,
+        we need to make calls to lp_solve to set them on the new
+        linear program instance.
+
+        All of the property setters will check for the existence of
+        self._lp and make calls to lp_solve as necessary. So, to set
+        all of our properties, we just have to trigger the property
+        setters a second time.
+        """
+        self.constraint_matrix = self.constraint_matrix
+        self.rhs = self.rhs
+        self.objective_coefficients = self.objective_coefficients
+        self.inequalities = self.inequalities
+        self.integer_variables = self.integer_variables
+        self.solution_lower_bounds = self.solution_lower_bounds
+        self.solution_upper_bounds = self.solution_upper_bounds
+        self.scale_mode = self.scale_mode
+        self.type = self.type
+
+
+
+    def delete(self):
+        if self._lp != None:
+            lpsolve('delete_lp', self._lp)
+
+
+
+    def create_lp_if_necessary(self):
+        """
+        If we already have a linear program instance, do nothing.
+        Otherwise, create one, and set all of the necessary properties.
+        """
+        if self._lp != None:
+            return
+
+        self._lp = lpsolve('make_lp',
+                           self.get_row_count(),
+                           self.get_column_count())
+
+        # This is not critical, but it will encourage lp_solve to
+        # warn us about potential problems.
+        lpsolve('set_verbose', self._lp, IMPORTANT)
+
+        self.set_all_lp_properties()
+
 
 
     def solve(self):
-        [v,x,duals] = lp_solve(self.objective_function_coefficients,
-                               self.constraint_matrix,
-                               self.rhs,
-                               self.inequalities)
-        return [v,x,duals]
+        """
+        Solve the linear program. The lp_solve instance is
+        created beforehand if necessary.
+        """
+        self.create_lp_if_necessary()
+        result = lpsolve('solve', self._lp)
+
+        # Default to empty return values.
+        obj = []
+        x = []
+        duals = []
+
+        # See http://lpsolve.sourceforge.net/5.5/solve.htm for a
+        # description of these constants.
+        if (result == OPTIMAL    or
+            result == SUBOPTIMAL or
+            result == PROCBREAK  or
+            result == FEASFOUND):
+
+            # If the result was "good," i.e. if get_solution will work,
+            # call it and use its return value as ours.
+            [obj, x, duals, ret] = lpsolve('get_solution', self._lp)
 
+        return [obj, x, duals]