Element = FiniteDimensionalEuclideanJordanAlgebraElement
-class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
- """
- Return the Euclidean Jordan Algebra corresponding to the set
- `R^n` under the Hadamard product.
-
- Note: this is nothing more than the Cartesian product of ``n``
- copies of the spin algebra. Once Cartesian product algebras
- are implemented, this can go.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import HadamardEJA
-
- EXAMPLES:
-
- This multiplication table can be verified by hand::
-
- sage: J = HadamardEJA(3)
- sage: e0,e1,e2 = J.gens()
- sage: e0*e0
- e0
- sage: e0*e1
- 0
- sage: e0*e2
- 0
- sage: e1*e1
- e1
- sage: e1*e2
- 0
- sage: e2*e2
- e2
-
- TESTS:
-
- We can change the generator prefix::
-
- sage: HadamardEJA(3, prefix='r').gens()
- (r0, r1, r2)
-
- """
- def __init__(self, n, field=AA, **kwargs):
- V = VectorSpace(field, n)
- mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
- for i in range(n) ]
-
- super(HadamardEJA, self).__init__(field,
- mult_table,
- check_axioms=False,
- **kwargs)
- self.rank.set_cache(n)
-
- def inner_product(self, x, y):
- """
- Faster to reimplement than to use natural representations.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import HadamardEJA
-
- TESTS:
-
- Ensure that this is the usual inner product for the algebras
- over `R^n`::
-
- sage: set_random_seed()
- sage: J = HadamardEJA.random_instance()
- sage: x,y = J.random_elements(2)
- sage: X = x.natural_representation()
- sage: Y = y.natural_representation()
- sage: x.inner_product(y) == J.natural_inner_product(X,Y)
- True
-
- """
- return x.to_vector().inner_product(y.to_vector())
-
def random_eja(field=AA):
"""
+class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
+ r"""
+ Algebras whose basis consists of vectors with rational
+ entries. Equivalently, algebras whose multiplication tables
+ contain only rational coefficients.
+
+ When an EJA has a basis that can be made rational, we can speed up
+ the computation of its characteristic polynomial by doing it over
+ ``QQ``. All of the named EJA constructors that we provide fall
+ into this category.
+ """
+ @cached_method
+ def _charpoly_coefficients(self):
+ r"""
+ Override the parent method with something that tries to compute
+ over a faster (non-extension) field.
+ """
+ if self.base_ring() is QQ:
+ # There's no need to construct *another* algebra over the
+ # rationals if this one is already over the rationals.
+ superclass = super(RationalBasisEuclideanJordanAlgebra, self)
+ return superclass._charpoly_coefficients()
+
+ mult_table = tuple(
+ map(lambda x: x.to_vector(), ls)
+ for ls in self._multiplication_table
+ )
+
+ # Do the computation over the rationals. The answer will be
+ # the same, because our basis coordinates are (essentially)
+ # rational.
+ J = FiniteDimensionalEuclideanJordanAlgebra(QQ,
+ mult_table,
+ check_field=False,
+ check_axioms=False)
+ return J._charpoly_coefficients()
+
+
class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
@staticmethod
def _max_test_case_size():
self.rank.set_cache(n)
-class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
+class HadamardEJA(RationalBasisEuclideanJordanAlgebra):
+ """
+ Return the Euclidean Jordan Algebra corresponding to the set
+ `R^n` under the Hadamard product.
+
+ Note: this is nothing more than the Cartesian product of ``n``
+ copies of the spin algebra. Once Cartesian product algebras
+ are implemented, this can go.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import HadamardEJA
+
+ EXAMPLES:
+
+ This multiplication table can be verified by hand::
+
+ sage: J = HadamardEJA(3)
+ sage: e0,e1,e2 = J.gens()
+ sage: e0*e0
+ e0
+ sage: e0*e1
+ 0
+ sage: e0*e2
+ 0
+ sage: e1*e1
+ e1
+ sage: e1*e2
+ 0
+ sage: e2*e2
+ e2
+
+ TESTS:
+
+ We can change the generator prefix::
+
+ sage: HadamardEJA(3, prefix='r').gens()
+ (r0, r1, r2)
+
+ """
+ def __init__(self, n, field=AA, **kwargs):
+ V = VectorSpace(field, n)
+ mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
+ for i in range(n) ]
+
+ super(HadamardEJA, self).__init__(field,
+ mult_table,
+ check_axioms=False,
+ **kwargs)
+ self.rank.set_cache(n)
+
+ def inner_product(self, x, y):
+ """
+ Faster to reimplement than to use natural representations.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import HadamardEJA
+
+ TESTS:
+
+ Ensure that this is the usual inner product for the algebras
+ over `R^n`::
+
+ sage: set_random_seed()
+ sage: J = HadamardEJA.random_instance()
+ sage: x,y = J.random_elements(2)
+ sage: X = x.natural_representation()
+ sage: Y = y.natural_representation()
+ sage: x.inner_product(y) == J.natural_inner_product(X,Y)
+ True
+
+ """
+ return x.to_vector().inner_product(y.to_vector())
+
+
+class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra):
r"""
The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
with the half-trace inner product and jordan product ``x*y =