return self.span_of_powers().dimension()
+ def subalgebra_generated_by(self):
+ """
+ Return the subalgebra of the parent EJA generated by this element.
+ """
+ # First get the subspace spanned by the powers of myself...
+ V = self.span_of_powers()
+ F = self.base_ring()
+
+ # Now figure out the entries of the right-multiplication
+ # matrix for the successive basis elements b0, b1,... of
+ # that subspace.
+ mats = []
+ for b_right in V.basis():
+ eja_b_right = self.parent()(b_right)
+ b_right_rows = []
+ # The first row of the right-multiplication matrix by
+ # b1 is what we get if we apply that matrix to b1. The
+ # second row of the right multiplication matrix by b1
+ # is what we get when we apply that matrix to b2...
+ for b_left in V.basis():
+ eja_b_left = self.parent()(b_left)
+ # Multiply in the original EJA, but then get the
+ # coordinates from the subalgebra in terms of its
+ # basis.
+ this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+ b_right_rows.append(this_row)
+ b_right_matrix = matrix(F, b_right_rows)
+ mats.append(b_right_matrix)
+
+ return FiniteDimensionalEuclideanJordanAlgebra(F, mats)
+
+
def minimal_polynomial(self):
return self.matrix().minimal_polynomial()