EXAMPLES::
- sage: MatrixAlgebra(ZZ,ZZ,2).one()
+ sage: MatrixAlgebra(ZZ,ZZ,2).zero()
+---+---+
- | 1 | 0 |
+ | 0 | 0 |
+---+---+
- | 0 | 1 |
+ | 0 | 0 |
+---+---+
"""
EXAMPLES::
- sage: MatrixAlgebra(ZZ,ZZ,2).one().list()
- [1, 0, 0, 1]
+ sage: A = MatrixAlgebra(ZZ,ZZ,2)
+ sage: A([[1,2],[3,4]]).list()
+ [1, 2, 3, 4]
"""
return sum( self.rows(), [] )
EXAMPLES::
- sage: M = MatrixAlgebra(ZZ,ZZ,2).one()
+ sage: M = MatrixAlgebra(ZZ,ZZ,2)([[1,2],[3,4]])
sage: M[0,0]
1
sage: M[0,1]
- 0
+ 2
sage: M[1,0]
- 0
+ 3
sage: M[1,1]
- 1
+ 4
"""
i,j = indices
sage: entries = MatrixSpace(ZZ,2)
sage: scalars = ZZ
sage: M = MatrixAlgebra(entries, scalars, 2)
- sage: M.one().trace()
+ sage: I = entries.one()
+ sage: Z = entries.zero()
+ sage: M([[I,Z],[Z,I]]).trace()
[2 0]
[0 2]
"""
return self.parent()
- # onlt valid in HurwitzMatrixAlgebra subclass
- # def is_hermitian(self):
- # r"""
-
- # SETUP::
-
- # sage: from mjo.octonions import OctonionMatrixAlgebra
-
- # EXAMPLES::
-
- # sage: MS = OctonionMatrixAlgebra(3)
- # sage: MS.one().is_hermitian()
- # True
-
- # """
- # return all( self[i,j] == self[j,i].conjugate()
- # for i in range(self.nrows())
- # for j in range(self.ncols()) )
-
class MatrixAlgebra(CombinatorialFreeModule):
r"""
else:
return self.zero()
- # TODO: only makes sense if I'm unital.
- def one(self):
- r"""
- SETUP::
-
- sage: from mjo.matrix_algebra import MatrixAlgebra
-
- """
- return sum( (self.monomial((i,i,self.entry_algebra().one()))
- for i in range(self.nrows()) ),
- self.zero() )
-
def from_list(self, entries):
r"""
Construct an element of this algebra from a list of lists of
sage: from mjo.matrix_algebra import MatrixAlgebra
+ EXAMPLES::
+
+ sage: A = MatrixAlgebra(QQbar, ZZ, 2)
+ sage: A.from_list([[0,I],[-I,0]])
+ +----+---+
+ | 0 | I |
+ +----+---+
+ | -I | 0 |
+ +----+---+
+
"""
nrows = len(entries)
ncols = 0
raise ValueError("list must be square")
def convert(e_ij):
- # We have to pass through vectors to convert from the
- # given entry algebra to ours. Otherwise we can fail
- # to convert an element of (for example) Octonions(QQ)
- # to Octonions(AA).
- return self.entry_algebra().from_vector(e_ij.to_vector())
+ if e_ij in self.entry_algebra():
+ # Don't re-create an element if it already lives where
+ # it should!
+ return e_ij
+
+ try:
+ # This branch works with e.g. QQbar, where no
+ # to/from_vector() methods are available.
+ return self.entry_algebra()(e_ij)
+ except TypeError:
+ # We have to pass through vectors to convert from the
+ # given entry algebra to ours. Otherwise we can fail to
+ # convert an element of (for example) Octonions(QQ) to
+ # Octonions(AA).
+ return self.entry_algebra().from_vector(e_ij.to_vector())
return sum( (self.monomial( (i,j, convert(entries[i][j])) )
for i in range(nrows)
for j in range(ncols) ),
self.zero() )
+
+ def _element_constructor_(self, elt):
+ if elt in self:
+ return self
+ else:
+ return self.from_list(elt)
+
+
+class HurwitzMatrixAlgebraElement(MatrixAlgebraElement):
+ def is_hermitian(self):
+ r"""
+
+ SETUP::
+
+ sage: from mjo.matrix_algebra import HurwitzMatrixAlgebra
+
+ EXAMPLES::
+
+ sage: A = HurwitzMatrixAlgebra(QQbar, ZZ, 2)
+ sage: M = A([ [ 0,I],
+ ....: [-I,0] ])
+ sage: M.is_hermitian()
+ True
+
+ """
+ return all( self[i,j] == self[j,i].conjugate()
+ for i in range(self.nrows())
+ for j in range(self.ncols()) )
+
+
+class HurwitzMatrixAlgebra(MatrixAlgebra):
+ Element = HurwitzMatrixAlgebraElement
+
+ def one(self):
+ r"""
+ SETUP::
+
+ sage: from mjo.matrix_algebra import HurwitzMatrixAlgebra
+
+ """
+ return sum( (self.monomial((i,i,self.entry_algebra().one()))
+ for i in range(self.nrows()) ),
+ self.zero() )
+
+