SETUP::
- sage: from mjo.hurwitz import HurwitzMatrixAlgebra
+ sage: from mjo.hurwitz import ComplexMatrixAlgebra
EXAMPLES::
- sage: A = HurwitzMatrixAlgebra(2, QQbar, ZZ)
+ sage: A = ComplexMatrixAlgebra(2, QQbar, ZZ)
sage: M = A([ [ I, 2*I],
....: [ 3*I, 4*I] ])
sage: M.conjugate_transpose()
+------+------+
- | -1*I | -3*I |
+ | -I | -3*I |
+------+------+
| -2*I | -4*I |
+------+------+
+ sage: M.conjugate_transpose().to_vector()
+ (0, -1, 0, -3, 0, -2, 0, -4)
"""
entries = [ [ self[j,i].conjugate()
SETUP::
- sage: from mjo.hurwitz import HurwitzMatrixAlgebra
+ sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
+ ....: HurwitzMatrixAlgebra)
EXAMPLES::
- sage: A = HurwitzMatrixAlgebra(2, QQbar, ZZ)
+ sage: A = ComplexMatrixAlgebra(2, QQbar, ZZ)
sage: M = A([ [ 0,I],
....: [-I,0] ])
sage: M.is_hermitian()
True
+ ::
+
+ sage: A = HurwitzMatrixAlgebra(2, AA, QQ)
+ sage: M = A([ [1, 1],
+ ....: [1, 1] ])
+ sage: M.is_hermitian()
+ True
+
"""
# A tiny bit faster than checking equality with the conjugate
# transpose.
(0, 0, 0, 1)
"""
- from sage.modules.free_module import VectorSpace
+ from sage.modules.free_module import FreeModule
d = len(self.entry_algebra_gens())
- V = VectorSpace(self.entry_algebra().base_ring(), d)
+ V = FreeModule(self.entry_algebra().base_ring(), d)
return V(entry.coefficient_tuple())
class ComplexMatrixAlgebra(HurwitzMatrixAlgebra):
(0, 1)
"""
- from sage.modules.free_module import VectorSpace
+ from sage.modules.free_module import FreeModule
d = len(self.entry_algebra_gens())
- V = VectorSpace(self.entry_algebra().base_ring(), d)
+ V = FreeModule(self.entry_algebra().base_ring(), d)
return V((entry.real(), entry.imag()))
# lies to us.
entry_basis = self.entry_algebra_gens()
- basis_indices = [(i,j,e) for j in range(n)
- for i in range(n)
+ basis_indices = [(i,j,e) for i in range(n)
+ for j in range(n)
for e in entry_basis]
super().__init__(scalars,
if hasattr(entry, 'to_vector'):
return entry.to_vector()
- from sage.modules.free_module import VectorSpace
+ from sage.modules.free_module import FreeModule
d = len(self.entry_algebra_gens())
- V = VectorSpace(self.entry_algebra().base_ring(), d)
+ V = FreeModule(self.entry_algebra().base_ring(), d)
if hasattr(entry, 'list'):
# sage matrices
(i,j,e1) = mon1
(k,l,e2) = mon2
if j == k:
- # If e1*e2 has a negative sign in front of it,
- # then (i,l,e1*e2) won't be a monomial!
- p = e1*e2
- if (i,l,p) in self.indices():
- return self.monomial((i,l,p))
- else:
- return -self.monomial((i,l,-p))
+ # There's no reason to expect e1*e2 to itself be a monomial,
+ # so we have to do some manual conversion to get one.
+ p = self._entry_algebra_element_to_vector(e1*e2)
+
+ # We have to convert alpha_g because a priori it lives in the
+ # base ring of the entry algebra.
+ R = self.base_ring()
+ return self.sum( R(alpha_g)*self.monomial( (i,l,g) )
+ for (alpha_g, g)
+ in zip(p, self.entry_algebra_gens()))
else:
return self.zero()
SETUP::
- sage: from mjo.matrix_algebra import MatrixAlgebra
+ sage: from mjo.hurwitz import ComplexMatrixAlgebra
EXAMPLES::
- sage: A = MatrixAlgebra(2, QQbar, ZZ)
- sage: A.from_list([[0,I],[-I,0]])
+ sage: A = ComplexMatrixAlgebra(2, QQbar, ZZ)
+ sage: M = A.from_list([[0,I],[-I,0]])
+ sage: M
+----+---+
| 0 | I |
+----+---+
| -I | 0 |
+----+---+
+ sage: M.to_vector()
+ (0, 0, 0, 1, 0, -1, 0, 0)
"""
nrows = len(entries)
# Octonions(AA).
return self.entry_algebra().from_vector(e_ij.to_vector())
- return sum( (self.monomial( (i,j, convert(entries[i][j])) )
- for i in range(nrows)
- for j in range(ncols) ),
- self.zero() )
+ def entry_to_element(i,j,entry):
+ # Convert an entry at i,j to a matrix whose only non-zero
+ # entry is i,j and corresponds to the entry.
+ p = self._entry_algebra_element_to_vector(entry)
+
+ # We have to convert alpha_g because a priori it lives in the
+ # base ring of the entry algebra.
+ R = self.base_ring()
+ return self.sum( R(alpha_g)*self.monomial( (i,j,g) )
+ for (alpha_g, g)
+ in zip(p, self.entry_algebra_gens()))
+
+ return self.sum( entry_to_element(i,j,entries[i][j])
+ for j in range(ncols)
+ for i in range(nrows) )
+
def _element_constructor_(self, elt):
if elt in self: