import Misc (flatten)
import Point (Point)
import Tetrahedron (polynomial)
-import ThreeDimensional (contains_point)
import Values (Values3D, dims, empty3d, zoom_shape)
import qualified Data.Array.Repa as R
| otherwise = Just $ (((cubes g) !! i) !! j) !! k
--- | Takes a 'Grid', and returns all 'Cube's belonging to it that
--- contain the given 'Point'.
-find_containing_cubes :: Grid -> Point -> [Cube]
-find_containing_cubes g p =
- filter contains_our_point all_cubes
+
+-- The first cube along any axis covers (-h/2, h/2). The second
+-- covers (h/2, 3h/2). The third, (3h/2, 5h/2), and so on.
+--
+-- We translate the (x,y,z) coordinates forward by 'h' so that the
+-- first covers (0, h), the second covers (h, 2h), etc. This makes
+-- it easy to figure out which cube contains the given point.
+calculate_containing_cube_coordinate :: Grid -> Double -> Int
+calculate_containing_cube_coordinate g coord
+ -- Don't use a cube on the boundary if we can help it.
+ | coord == delta && (xsize > 0 && ysize > 0 && zsize > 0) = 1
+ | otherwise = (ceiling ( (coord + delta) / cube_width )) - 1
+ where
+ (xsize, ysize, zsize) = dims (function_values g)
+ delta = (h g)
+ cube_width = 2 * delta
+
+
+-- | Takes a 'Grid', and returns a 'Cube' containing the given 'Point'.
+-- Since our grid is rectangular, we can figure this out without having
+-- to check every cube.
+find_containing_cube :: Grid -> Point -> Cube
+find_containing_cube g p =
+ case cube_at g i j k of
+ Just c -> c
+ Nothing -> error "No cube contains the given point."
where
- all_cubes = flatten $ cubes g
- contains_our_point = flip contains_point p
+ (x, y, z) = p
+ i = calculate_containing_cube_coordinate g x
+ j = calculate_containing_cube_coordinate g y
+ k = calculate_containing_cube_coordinate g z
zoom :: Grid -> Int -> Values3D
j' = fromIntegral j
k' = fromIntegral k
p = (i', j', k') :: Point
- c = head (find_containing_cubes g p)
+ c = find_containing_cube g p
t = head (find_containing_tetrahedra c p)
f = polynomial t