from sage.matrix.constructor import matrix
+from sage.misc.cachefunc import cached_method
from sage.modules.free_module import VectorSpace
from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
return ((-1)**r)*p(*self.to_vector())
+ @cached_method
def inverse(self):
"""
Return the Jordan-multiplicative inverse of this element.
sage: JordanSpinEJA(3).zero().inverse()
Traceback (most recent call last):
...
- ValueError: element is not invertible
+ ZeroDivisionError: element is not invertible
TESTS:
sage: slow == fast # long time
True
"""
- if not self.is_invertible():
- raise ValueError("element is not invertible")
-
+ not_invertible_msg = "element is not invertible"
if self.parent()._charpoly_coefficients.is_in_cache():
# We can invert using our charpoly if it will be fast to
# compute. If the coefficients are cached, our rank had
# better be too!
+ if self.det().is_zero():
+ raise ZeroDivisionError(not_invertible_msg)
r = self.parent().rank()
a = self.characteristic_polynomial().coefficients(sparse=False)
return (-1)**(r+1)*sum(a[i+1]*self**i for i in range(r))/self.det()
- return (~self.quadratic_representation())(self)
+ try:
+ inv = (~self.quadratic_representation())(self)
+ self.is_invertible.set_cache(True)
+ return inv
+ except ZeroDivisionError:
+ self.is_invertible.set_cache(False)
+ raise ZeroDivisionError(not_invertible_msg)
+ @cached_method
def is_invertible(self):
"""
Return whether or not this element is invertible.
ALGORITHM:
- The usual way to do this is to check if the determinant is
- zero, but we need the characteristic polynomial for the
- determinant. The minimal polynomial is a lot easier to get,
- so we use Corollary 2 in Chapter V of Koecher to check
- whether or not the parent algebra's zero element is a root
- of this element's minimal polynomial.
-
- That is... unless the coefficients of our algebra's
- "characteristic polynomial of" function are already cached!
- In that case, we just use the determinant (which will be fast
- as a result).
-
- Beware that we can't use the superclass method, because it
- relies on the algebra being associative.
+ If computing my determinant will be fast, we do so and compare
+ with zero (Proposition II.2.4 in Faraut and
+ Koranyi). Otherwise, Proposition II.3.2 in Faraut and Koranyi
+ reduces the problem to the invertibility of my quadratic
+ representation.
SETUP::
sage: fast = x.is_invertible() # long time
sage: slow == fast # long time
True
-
"""
if self.is_zero():
if self.parent().is_trivial():
return False
if self.parent()._charpoly_coefficients.is_in_cache():
- # The determinant will be quicker than computing the minimal
- # polynomial from scratch, most likely.
+ # The determinant will be quicker than inverting the
+ # quadratic representation, most likely.
return (not self.det().is_zero())
- # In fact, we only need to know if the constant term is non-zero,
- # so we can pass in the field's zero element instead.
- zero = self.base_ring().zero()
- p = self.minimal_polynomial()
- return not (p(zero) == zero)
+ # The easiest way to determine if I'm invertible is to try.
+ try:
+ inv = (~self.quadratic_representation())(self)
+ self.inverse.set_cache(inv)
+ return True
+ except ZeroDivisionError:
+ return False
def is_primitive_idempotent(self):