sage: J = RealSymmetricEJA(3)
sage: x = sum( i*J.gens()[i] for i in range(6) )
- sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
+ sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
sage: [ K(x^k) for k in range(J.rank()) ]
[f0, f1, f2]
sage: J = RealSymmetricEJA(3)
sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
- sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
+ sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
sage: K.vector_space()
Vector space of degree 6 and dimension 3 over...
User basis matrix:
sage: v3 = vector(QQ,(2,1,-1))
sage: v = [v1,v2,v3]
sage: u = gram_schmidt(v)
- sage: [ u_i.inner_product(u_i).sqrt() == 1 for u_i in u ]
+ sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u )
True
sage: u[0].inner_product(u[1]) == 0
True