return A.element_class(A, (self.matrix()**(n-1))*self.vector())
+ def characteristic_polynomial(self):
+ return self.matrix().characteristic_polynomial()
+
+
+ def is_nilpotent(self):
+ """
+ Return whether or not some power of this element is zero.
+
+ The superclass method won't work unless we're in an
+ associative algebra, and we aren't. However, we generate
+ an assocoative subalgebra and we're nilpotent there if and
+ only if we're nilpotent here (probably).
+
+ TESTS:
+
+ The identity element is never nilpotent::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(2,10).abs()
+ sage: J = eja_rn(n)
+ sage: J.one().is_nilpotent()
+ False
+ sage: J = eja_ln(n)
+ sage: J.one().is_nilpotent()
+ False
+
+ The additive identity is always nilpotent::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(2,10).abs()
+ sage: J = eja_rn(n)
+ sage: J.zero().is_nilpotent()
+ True
+ sage: J = eja_ln(n)
+ sage: J.zero().is_nilpotent()
+ True
+
+ """
+ # The element we're going to call "is_nilpotent()" on.
+ # Either myself, interpreted as an element of a finite-
+ # dimensional algebra, or an element of an associative
+ # subalgebra.
+ elt = None
+
+ if self.parent().is_associative():
+ elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+ else:
+ V = self.span_of_powers()
+ assoc_subalg = self.subalgebra_generated_by()
+ # Mis-design warning: the basis used for span_of_powers()
+ # and subalgebra_generated_by() must be the same, and in
+ # the same order!
+ elt = assoc_subalg(V.coordinates(self.vector()))
+
+ # Recursive call, but should work since elt lives in an
+ # associative algebra.
+ return elt.is_nilpotent()
+
+
def is_regular(self):
"""
Return whether or not this is a regular element.
"""
return self.degree() == self.parent().rank()
- def span_of_powers(self):
- """
- Return the vector space spanned by successive powers of
- this element.
- """
- # The dimension of the subalgebra can't be greater than
- # the big algebra, so just put everything into a list
- # and let span() get rid of the excess.
- V = self.vector().parent()
- return V.span( (self**d).vector() for d in xrange(V.dimension()) )
-
def degree(self):
"""
return fda_elt.matrix().transpose()
- def subalgebra_generated_by(self):
- """
- Return the associative subalgebra of the parent EJA generated
- by this element.
-
- TESTS::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(1,10).abs()
- sage: J = eja_rn(n)
- sage: x = J.random_element()
- sage: x.subalgebra_generated_by().is_associative()
- True
- sage: J = eja_ln(n)
- sage: x = J.random_element()
- sage: x.subalgebra_generated_by().is_associative()
- True
-
- Squaring in the subalgebra should be the same thing as
- squaring in the superalgebra::
-
- sage: J = eja_ln(5)
- sage: x = J.random_element()
- sage: u = x.subalgebra_generated_by().random_element()
- sage: u.matrix()*u.vector() == (u**2).vector()
- True
-
- """
- # First get the subspace spanned by the powers of myself...
- V = self.span_of_powers()
- F = self.base_ring()
-
- # Now figure out the entries of the right-multiplication
- # matrix for the successive basis elements b0, b1,... of
- # that subspace.
- mats = []
- for b_right in V.basis():
- eja_b_right = self.parent()(b_right)
- b_right_rows = []
- # The first row of the right-multiplication matrix by
- # b1 is what we get if we apply that matrix to b1. The
- # second row of the right multiplication matrix by b1
- # is what we get when we apply that matrix to b2...
- #
- # IMPORTANT: this assumes that all vectors are COLUMN
- # vectors, unlike our superclass (which uses row vectors).
- for b_left in V.basis():
- eja_b_left = self.parent()(b_left)
- # Multiply in the original EJA, but then get the
- # coordinates from the subalgebra in terms of its
- # basis.
- this_row = V.coordinates((eja_b_left*eja_b_right).vector())
- b_right_rows.append(this_row)
- b_right_matrix = matrix(F, b_right_rows)
- mats.append(b_right_matrix)
-
- # It's an algebra of polynomials in one element, and EJAs
- # are power-associative.
- #
- # TODO: choose generator names intelligently.
- return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
-
-
def minimal_polynomial(self):
"""
EXAMPLES::
return elt.minimal_polynomial()
- def is_nilpotent(self):
+ def span_of_powers(self):
"""
- Return whether or not some power of this element is zero.
+ Return the vector space spanned by successive powers of
+ this element.
+ """
+ # The dimension of the subalgebra can't be greater than
+ # the big algebra, so just put everything into a list
+ # and let span() get rid of the excess.
+ V = self.vector().parent()
+ return V.span( (self**d).vector() for d in xrange(V.dimension()) )
- The superclass method won't work unless we're in an
- associative algebra, and we aren't. However, we generate
- an assocoative subalgebra and we're nilpotent there if and
- only if we're nilpotent here (probably).
- TESTS:
+ def subalgebra_generated_by(self):
+ """
+ Return the associative subalgebra of the parent EJA generated
+ by this element.
- The identity element is never nilpotent::
+ TESTS::
sage: set_random_seed()
- sage: n = ZZ.random_element(2,10).abs()
+ sage: n = ZZ.random_element(1,10).abs()
sage: J = eja_rn(n)
- sage: J.one().is_nilpotent()
- False
+ sage: x = J.random_element()
+ sage: x.subalgebra_generated_by().is_associative()
+ True
sage: J = eja_ln(n)
- sage: J.one().is_nilpotent()
- False
+ sage: x = J.random_element()
+ sage: x.subalgebra_generated_by().is_associative()
+ True
- The additive identity is always nilpotent::
+ Squaring in the subalgebra should be the same thing as
+ squaring in the superalgebra::
- sage: set_random_seed()
- sage: n = ZZ.random_element(2,10).abs()
- sage: J = eja_rn(n)
- sage: J.zero().is_nilpotent()
- True
- sage: J = eja_ln(n)
- sage: J.zero().is_nilpotent()
+ sage: J = eja_ln(5)
+ sage: x = J.random_element()
+ sage: u = x.subalgebra_generated_by().random_element()
+ sage: u.matrix()*u.vector() == (u**2).vector()
True
"""
- # The element we're going to call "is_nilpotent()" on.
- # Either myself, interpreted as an element of a finite-
- # dimensional algebra, or an element of an associative
- # subalgebra.
- elt = None
+ # First get the subspace spanned by the powers of myself...
+ V = self.span_of_powers()
+ F = self.base_ring()
- if self.parent().is_associative():
- elt = FiniteDimensionalAlgebraElement(self.parent(), self)
- else:
- V = self.span_of_powers()
- assoc_subalg = self.subalgebra_generated_by()
- # Mis-design warning: the basis used for span_of_powers()
- # and subalgebra_generated_by() must be the same, and in
- # the same order!
- elt = assoc_subalg(V.coordinates(self.vector()))
+ # Now figure out the entries of the right-multiplication
+ # matrix for the successive basis elements b0, b1,... of
+ # that subspace.
+ mats = []
+ for b_right in V.basis():
+ eja_b_right = self.parent()(b_right)
+ b_right_rows = []
+ # The first row of the right-multiplication matrix by
+ # b1 is what we get if we apply that matrix to b1. The
+ # second row of the right multiplication matrix by b1
+ # is what we get when we apply that matrix to b2...
+ #
+ # IMPORTANT: this assumes that all vectors are COLUMN
+ # vectors, unlike our superclass (which uses row vectors).
+ for b_left in V.basis():
+ eja_b_left = self.parent()(b_left)
+ # Multiply in the original EJA, but then get the
+ # coordinates from the subalgebra in terms of its
+ # basis.
+ this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+ b_right_rows.append(this_row)
+ b_right_matrix = matrix(F, b_right_rows)
+ mats.append(b_right_matrix)
- # Recursive call, but should work since elt lives in an
- # associative algebra.
- return elt.is_nilpotent()
+ # It's an algebra of polynomials in one element, and EJAs
+ # are power-associative.
+ #
+ # TODO: choose generator names intelligently.
+ return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
def subalgebra_idempotent(self):
- def characteristic_polynomial(self):
- return self.matrix().characteristic_polynomial()
-
-
def eja_rn(dimension, field=QQ):
"""
Return the Euclidean Jordan Algebra corresponding to the set