True
"""
+ self._charpoly = None # for caching
self._rank = rank
self._natural_basis = natural_basis
self._multiplication_table = mult_table
return fmt.format(self.degree(), self.base_ring())
+
def characteristic_polynomial(self):
+ """
+ EXAMPLES:
+
+ The characteristic polynomial in the spin algebra is given in
+ Alizadeh, Example 11.11::
+
+ sage: J = JordanSpinEJA(3)
+ sage: p = J.characteristic_polynomial(); p
+ X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
+ sage: xvec = J.one().vector()
+ sage: p(*xvec)
+ t^2 - 2*t + 1
+
+ """
+ if self._charpoly is not None:
+ return self._charpoly
+
r = self.rank()
n = self.dimension()
- names = ['X' + str(i) for i in range(1,n+1)]
- R = PolynomialRing(self.base_ring(), names)
- J = FiniteDimensionalEuclideanJordanAlgebra(R,
- self._multiplication_table,
- rank=r)
- x0 = J.zero()
+ # First, compute the basis B...
+ x0 = self.zero()
c = 1
- for g in J.gens():
+ for g in self.gens():
x0 += c*g
c +=1
if not x0.is_regular():
raise ValueError("don't know a regular element")
+ V = x0.vector().parent().ambient_vector_space()
+ V1 = V.span_of_basis( (x0**k).vector() for k in range(self.rank()) )
+ B = (V1.basis() + V1.complement().basis())
+
+ # Now switch to the polynomial rings.
+
+ names = ['X' + str(i) for i in range(1,n+1)]
+ R = PolynomialRing(self.base_ring(), names)
+ J = FiniteDimensionalEuclideanJordanAlgebra(R,
+ self._multiplication_table,
+ rank=r)
+ B = [ b.change_ring(R.fraction_field()) for b in B ]
# Get the vector space (as opposed to module) so that
# span_of_basis() works.
- V = x0.vector().parent().ambient_vector_space()
- V1 = V.span_of_basis( (x0**k).vector() for k in range(r) )
- B = V1.basis() + V1.complement().basis()
+ V = J.zero().vector().parent().ambient_vector_space()
W = V.span_of_basis(B)
def e(k):
A_of_x = block_matrix(1, n, (l1 + l2))
xr = W.coordinates((x**r).vector())
a = []
+ denominator = A_of_x.det() # This is constant
for i in range(n):
- A_cols = A.columns()
+ A_cols = A_of_x.columns()
A_cols[i] = xr
- numerator = column_matrix(A.base_ring(), A_cols).det()
- denominator = A.det()
+ numerator = column_matrix(A_of_x.base_ring(), A_cols).det()
ai = numerator/denominator
a.append(ai)
- # Note: all entries past the rth should be zero.
- return a
+ # We go to a bit of trouble here to reorder the
+ # indeterminates, so that it's easier to evaluate the
+ # characteristic polynomial at x's coordinates and get back
+ # something in terms of t, which is what we want.
+ S = PolynomialRing(self.base_ring(),'t')
+ t = S.gen(0)
+ S = PolynomialRing(S, R.variable_names())
+ t = S(t)
+
+ # We're relying on the theory here to ensure that each entry
+ # a[i] is indeed back in R, and the added negative signs are
+ # to make the whole expression sum to zero.
+ a = [R(-ai) for ai in a] # corresponds to powerx x^0 through x^(r-1)
+
+ # Note: all entries past the rth should be zero. The
+ # coefficient of the highest power (x^r) is 1, but it doesn't
+ # appear in the solution vector which contains coefficients
+ # for the other powers (to make them sum to x^r).
+ if (r < n):
+ a[r] = 1 # corresponds to x^r
+ else:
+ # When the rank is equal to the dimension, trying to
+ # assign a[r] goes out-of-bounds.
+ a.append(1) # corresponds to x^r
+
+ self._charpoly = sum( a[k]*(t**k) for k in range(len(a)) )
+ return self._charpoly
def inner_product(self, x, y):