that lattice unless its rank is incompatible with the dimension
``n`` (in which case a ``ValueError`` is raised).
- REFERENCES:
+ ALGORITHM:
- .. [HenrionSeeger] Rene Henrion and Alberto Seeger.
- Inradius and Circumradius of Various Convex Cones Arising in
- Applications. Set-Valued and Variational Analysis, 18(3-4),
- 483-511, 2010. doi:10.1007/s11228-010-0150-z
+ The generators for the rearrangement cone are given by [Jeong]_
+ Theorem 5.2.3.
+
+ REFERENCES:
.. [GowdaJeong] Muddappa Seetharama Gowda and Juyoung Jeong.
Spectral cones in Euclidean Jordan algebras.
Linear Algebra and its Applications, 509, 286-305.
doi:10.1016/j.laa.2016.08.004
+ .. [HenrionSeeger] Rene Henrion and Alberto Seeger.
+ Inradius and Circumradius of Various Convex Cones Arising in
+ Applications. Set-Valued and Variational Analysis, 18(3-4),
+ 483-511, 2010. doi:10.1007/s11228-010-0150-z
+
.. [Jeong] Juyoung Jeong.
Spectral sets and functions on Euclidean Jordan algebras.
+ University of Maryland, Baltimore County, Ph.D. thesis, 2017.
SETUP::
sage: rearrangement_cone(5,5).lineality()
4
- All rearrangement cones are proper::
+ All rearrangement cones are proper when ``p`` is less than ``n`` by
+ [Jeong]_ Proposition 5.2.1::
sage: all( rearrangement_cone(p,n).is_proper()
....: for n in xrange(10)
True
The Lyapunov rank of the rearrangement cone of order ``p`` in ``n``
- dimensions is ``n`` for ``p == 1`` or ``p == n`` and one otherwise::
+ dimensions is ``n`` for ``p == 1`` or ``p == n`` and one otherwise,
+ by [Jeong]_ Corollary 5.2.4::
sage: all( rearrangement_cone(p,n).lyapunov_rank() == n
....: for n in xrange(2, 10)
TESTS:
- The rearrangement cone is permutation-invariant::
+ All rearrangement cones are permutation-invariant by [Jeong]_
+ Proposition 5.2.1::
sage: n = ZZ.random_element(2,10).abs()
sage: p = ZZ.random_element(1,n)
....: )
True
- The rearrangenent cone of order ``p`` is contained in the
- rearrangement cone of order ``p + 1``::
+ The rearrangenent cone of order ``p`` is contained in the rearrangement
+ cone of order ``p + 1`` by [Jeong]_ Proposition 5.2.1::
sage: set_random_seed()
sage: n = ZZ.random_element(2,10)
sage: all( x in K2 for x in K1 )
True
+ The rearrangement cone of order ``p`` is linearly isomorphic to the
+ rearrangement cone of order ``n - p`` when ``p`` is less than ``n``,
+ by [Jeong]_ Proposition 5.2.1::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(2,10)
+ sage: p = ZZ.random_element(1,n)
+ sage: K1 = rearrangement_cone(p,n)
+ sage: K2 = rearrangement_cone(n-p, n)
+ sage: Mp = (1/p)*matrix.ones(QQ,n) - identity_matrix(QQ,n)
+ sage: Cone( (Mp*K2.rays()).columns() ).is_equivalent(K1)
+ True
+
The order ``p`` should be between ``1`` and ``n``, inclusive::
sage: rearrangement_cone(0,3)