what can be supported in a general Jordan Algebra.
"""
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
+#from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
+from sage.combinat.free_module import CombinatorialFreeModule
from sage.matrix.constructor import matrix
from sage.misc.cachefunc import cached_method
from sage.misc.prandom import choice
from sage.structure.category_object import normalize_names
from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_utils import _vec2mat, _mat2vec
-
-class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
- @staticmethod
- def __classcall_private__(cls,
- field,
- mult_table,
- rank,
- names='e',
- assume_associative=False,
- category=None,
- natural_basis=None):
- n = len(mult_table)
- mult_table = [b.base_extend(field) for b in mult_table]
- for b in mult_table:
- b.set_immutable()
- if not (is_Matrix(b) and b.dimensions() == (n, n)):
- raise ValueError("input is not a multiplication table")
- mult_table = tuple(mult_table)
-
- cat = FiniteDimensionalAlgebrasWithBasis(field)
- cat.or_subcategory(category)
- if assume_associative:
- cat = cat.Associative()
-
- names = normalize_names(n, names)
-
- fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
- return fda.__classcall__(cls,
- field,
- mult_table,
- rank,
- assume_associative=assume_associative,
- names=names,
- category=cat,
- natural_basis=natural_basis)
-
+from mjo.eja.eja_utils import _mat2vec
+class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
def __init__(self,
field,
mult_table,
rank,
- names='e',
- assume_associative=False,
+ prefix='e',
category=None,
natural_basis=None):
"""
self._rank = rank
self._natural_basis = natural_basis
self._multiplication_table = mult_table
+ if category is None:
+ category = FiniteDimensionalAlgebrasWithBasis(field).Unital()
fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
fda.__init__(field,
- mult_table,
- names=names,
+ range(len(mult_table)),
+ prefix=prefix,
category=category)
+ self.print_options(bracket='')
def _repr_(self):
Euclidean Jordan algebra of degree 3 over Real Double Field
"""
+ # TODO: change this to say "dimension" and fix all the tests.
fmt = "Euclidean Jordan algebra of degree {} over {}"
- return fmt.format(self.degree(), self.base_ring())
+ return fmt.format(self.dimension(), self.base_ring())
+ def product_on_basis(self, i, j):
+ ei = self.basis()[i]
+ ej = self.basis()[j]
+ Lei = self._multiplication_table[i]
+ return self.from_vector(Lei*ej.to_vector())
def _a_regular_element(self):
"""
"""
z = self._a_regular_element()
V = self.vector_space()
- V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
+ V1 = V.span_of_basis( (z**k).to_vector() for k in range(self.rank()) )
b = (V1.basis() + V1.complement().basis())
return V.span_of_basis(b)
n = self.dimension()
# Construct a new algebra over a multivariate polynomial ring...
- names = ['X' + str(i) for i in range(1,n+1)]
+ names = tuple('X' + str(i) for i in range(1,n+1))
R = PolynomialRing(self.base_ring(), names)
- J = FiniteDimensionalEuclideanJordanAlgebra(R,
- self._multiplication_table,
- r)
+ J = FiniteDimensionalEuclideanJordanAlgebra(
+ R,
+ tuple(self._multiplication_table),
+ r)
idmat = matrix.identity(J.base_ring(), n)
# Handle the zeroth power separately, because computing
# the unit element in J is mathematically suspect.
- x0 = W.coordinates(self.one().vector())
- l1 = [ matrix.column(x0) ]
- l1 += [ matrix.column(W.coordinates((x**k).vector()))
+ x0 = W.coordinate_vector(self.one().to_vector())
+ l1 = [ x0.column() ]
+ l1 += [ W.coordinate_vector((x**k).to_vector()).column()
for k in range(1,r) ]
l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
A_of_x = matrix.block(R, 1, n, (l1 + l2))
- xr = W.coordinates((x**r).vector())
+ xr = W.coordinate_vector((x**r).to_vector())
return (A_of_x, x, xr, A_of_x.det())
sage: J = JordanSpinEJA(3)
sage: p = J.characteristic_polynomial(); p
X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
- sage: xvec = J.one().vector()
+ sage: xvec = J.one().to_vector()
sage: p(*xvec)
t^2 - 2*t + 1
sage: J = RealSymmetricEJA(2)
sage: J.basis()
- Family (e0, e1, e2)
+ Finite family {0: e0, 1: e1, 2: e2}
sage: J.natural_basis()
(
[1 0] [0 1] [0 0]
sage: J = JordanSpinEJA(2)
sage: J.basis()
- Family (e0, e1)
+ Finite family {0: e0, 1: e1}
sage: J.natural_basis()
(
[1] [0]
"""
if self._natural_basis is None:
- return tuple( b.vector().column() for b in self.basis() )
+ return tuple( b.to_vector().column() for b in self.basis() )
else:
return self._natural_basis
# Now if there's an identity element in the algebra, this should work.
coeffs = A.solve_right(b)
- return self.linear_combination(zip(coeffs,self.gens()))
+ return self.linear_combination(zip(self.gens(), coeffs))
def rank(self):
Vector space of dimension 3 over Rational Field
"""
- return self.zero().vector().parent().ambient_vector_space()
+ return self.zero().to_vector().parent().ambient_vector_space()
Element = FiniteDimensionalEuclideanJordanAlgebraElement
e2
"""
- @staticmethod
- def __classcall_private__(cls, n, field=QQ):
- # The FiniteDimensionalAlgebra constructor takes a list of
- # matrices, the ith representing right multiplication by the ith
- # basis element in the vector space. So if e_1 = (1,0,0), then
- # right (Hadamard) multiplication of x by e_1 picks out the first
+ def __init__(self, n, field=QQ):
+ # The superclass constructor takes a list of matrices, the ith
+ # representing right multiplication by the ith basis element
+ # in the vector space. So if e_1 = (1,0,0), then right
+ # (Hadamard) multiplication of x by e_1 picks out the first
# component of x; and likewise for the ith basis element e_i.
Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
for i in xrange(n) ]
- fdeja = super(RealCartesianProductEJA, cls)
- return fdeja.__classcall_private__(cls, field, Qs, rank=n)
+ fdeja = super(RealCartesianProductEJA, self)
+ return fdeja.__init__(field, Qs, rank=n)
def inner_product(self, x, y):
return _usual_ip(x,y)
dimension = basis[0].nrows()
V = VectorSpace(field, dimension**2)
- W = V.span( _mat2vec(s) for s in basis )
-
- # Taking the span above reorders our basis (thanks, jerk!) so we
- # need to put our "matrix basis" in the same order as the
- # (reordered) vector basis.
- S = tuple( _vec2mat(b) for b in W.basis() )
+ W = V.span_of_basis( _mat2vec(s) for s in basis )
Qs = []
- for s in S:
+ for s in basis:
# Brute force the multiplication-by-s matrix by looping
# through all elements of the basis and doing the computation
- # to find out what the corresponding row should be. BEWARE:
- # these multiplication tables won't be symmetric! It therefore
- # becomes REALLY IMPORTANT that the underlying algebra
- # constructor uses ROW vectors and not COLUMN vectors. That's
- # why we're computing rows here and not columns.
- Q_rows = []
- for t in S:
- this_row = _mat2vec((s*t + t*s)/2)
- Q_rows.append(W.coordinates(this_row))
- Q = matrix(field, W.dimension(), Q_rows)
+ # to find out what the corresponding row should be.
+ Q_cols = []
+ for t in basis:
+ this_col = _mat2vec((s*t + t*s)/2)
+ Q_cols.append(W.coordinates(this_col))
+ Q = matrix.column(field, W.dimension(), Q_cols)
Qs.append(Q)
- return (Qs, S)
+ return Qs
def _embed_complex_matrix(M):
# The usual inner product on R^n.
def _usual_ip(x,y):
- return x.vector().inner_product(y.vector())
+ return x.to_vector().inner_product(y.to_vector())
# The inner product used for the real symmetric simple EJA.
# We keep it as a separate function because e.g. the complex
True
"""
- @staticmethod
- def __classcall_private__(cls, n, field=QQ):
+ def __init__(self, n, field=QQ):
S = _real_symmetric_basis(n, field=field)
- (Qs, T) = _multiplication_table_from_matrix_basis(S)
+ Qs = _multiplication_table_from_matrix_basis(S)
- fdeja = super(RealSymmetricEJA, cls)
- return fdeja.__classcall_private__(cls,
- field,
- Qs,
- rank=n,
- natural_basis=T)
+ fdeja = super(RealSymmetricEJA, self)
+ return fdeja.__init__(field,
+ Qs,
+ rank=n,
+ natural_basis=S)
def inner_product(self, x, y):
return _matrix_ip(x,y)
True
"""
- @staticmethod
- def __classcall_private__(cls, n, field=QQ):
+ def __init__(self, n, field=QQ):
S = _complex_hermitian_basis(n)
- (Qs, T) = _multiplication_table_from_matrix_basis(S)
+ Qs = _multiplication_table_from_matrix_basis(S)
+
+ fdeja = super(ComplexHermitianEJA, self)
+ return fdeja.__init__(field,
+ Qs,
+ rank=n,
+ natural_basis=S)
- fdeja = super(ComplexHermitianEJA, cls)
- return fdeja.__classcall_private__(cls,
- field,
- Qs,
- rank=n,
- natural_basis=T)
def inner_product(self, x, y):
# Since a+bi on the diagonal is represented as
True
"""
- @staticmethod
- def __classcall_private__(cls, n, field=QQ):
+ def __init__(self, n, field=QQ):
S = _quaternion_hermitian_basis(n)
- (Qs, T) = _multiplication_table_from_matrix_basis(S)
+ Qs = _multiplication_table_from_matrix_basis(S)
- fdeja = super(QuaternionHermitianEJA, cls)
- return fdeja.__classcall_private__(cls,
- field,
- Qs,
- rank=n,
- natural_basis=T)
+ fdeja = super(QuaternionHermitianEJA, self)
+ return fdeja.__init__(field,
+ Qs,
+ rank=n,
+ natural_basis=S)
def inner_product(self, x, y):
# Since a+bi+cj+dk on the diagonal is represented as
0
"""
- @staticmethod
- def __classcall_private__(cls, n, field=QQ):
+ def __init__(self, n, field=QQ):
Qs = []
id_matrix = matrix.identity(field, n)
for i in xrange(n):
# The rank of the spin algebra is two, unless we're in a
# one-dimensional ambient space (because the rank is bounded by
# the ambient dimension).
- fdeja = super(JordanSpinEJA, cls)
- return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
+ fdeja = super(JordanSpinEJA, self)
+ return fdeja.__init__(field, Qs, rank=min(n,2))
def inner_product(self, x, y):
return _usual_ip(x,y)
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
from sage.matrix.constructor import matrix
from sage.modules.free_module import VectorSpace
+from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
# TODO: make this unnecessary somehow.
from sage.misc.lazy_import import lazy_import
from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
from mjo.eja.eja_utils import _mat2vec
-class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraElement):
+class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
"""
An element of a Euclidean Jordan algebra.
"""
dir(self.__class__) )
- def __init__(self, A, elt=None):
+ def __init__(self, A, elt):
"""
SETUP::
sage: set_random_seed()
sage: J = random_eja()
sage: v = J.vector_space().random_element()
- sage: J(v).vector() == v
+ sage: J(v).to_vector() == v
True
"""
# already fits into the algebra, but also happens to live
# in the parent's "natural ambient space" (this happens with
# vectors in R^n).
+ ifme = super(FiniteDimensionalEuclideanJordanAlgebraElement, self)
try:
- FiniteDimensionalAlgebraElement.__init__(self, A, elt)
+ ifme.__init__(A, elt)
except ValueError:
natural_basis = A.natural_basis()
if elt in natural_basis[0].matrix_space():
# natural-basis coordinates ourselves.
V = VectorSpace(elt.base_ring(), elt.nrows()**2)
W = V.span( _mat2vec(s) for s in natural_basis )
- coords = W.coordinates(_mat2vec(elt))
- FiniteDimensionalAlgebraElement.__init__(self, A, coords)
+ coords = W.coordinate_vector(_mat2vec(elt))
+ ifme.__init__(A, coords)
+
def __pow__(self, n):
"""
"""
p = self.parent().characteristic_polynomial()
- return p(*self.vector())
+ return p(*self.to_vector())
def inner_product(self, other):
# -1 to ensure that _charpoly_coeff(0) is really what
# appears in front of t^{0} in the charpoly. However,
# we want (-1)^r times THAT for the determinant.
- return ((-1)**r)*p(*self.vector())
+ return ((-1)**r)*p(*self.to_vector())
def inverse(self):
sage: x = J.random_element()
sage: while not x.is_invertible():
....: x = J.random_element()
- sage: x_vec = x.vector()
+ sage: x_vec = x.to_vector()
sage: x0 = x_vec[0]
sage: x_bar = x_vec[1:]
sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
sage: y = J.random_element()
sage: while y == y.coefficient(0)*J.one():
....: y = J.random_element()
- sage: y0 = y.vector()[0]
- sage: y_bar = y.vector()[1:]
+ sage: y0 = y.to_vector()[0]
+ sage: y_bar = y.to_vector()[1:]
sage: actual = y.minimal_polynomial()
sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
"""
A = self.subalgebra_generated_by()
- return A(self).operator().minimal_polynomial()
+ return A.element_class(A,self).operator().minimal_polynomial()
"""
B = self.parent().natural_basis()
W = B[0].matrix_space()
- return W.linear_combination(zip(self.vector(), B))
+ return W.linear_combination(zip(B,self.to_vector()))
def operator(self):
"""
P = self.parent()
- fda_elt = FiniteDimensionalAlgebraElement(P, self)
return FiniteDimensionalEuclideanJordanAlgebraOperator(
P,
P,
- fda_elt.matrix().transpose() )
+ self.to_matrix() )
def quadratic_representation(self, other=None):
sage: n = ZZ.random_element(1,10)
sage: J = JordanSpinEJA(n)
sage: x = J.random_element()
- sage: x_vec = x.vector()
+ sage: x_vec = x.to_vector()
sage: x0 = x_vec[0]
sage: x_bar = x_vec[1:]
sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
# Our FiniteDimensionalAlgebraElement superclass uses rows.
u_next = u**(s+1)
A = u_next.operator().matrix()
- c = J(A.solve_right(u_next.vector()))
+ c = J(A.solve_right(u_next.to_vector()))
# Now c is the idempotent we want, but it still lives in the subalgebra.
return c.superalgebra_element()
# -1 to ensure that _charpoly_coeff(r-1) is really what
# appears in front of t^{r-1} in the charpoly. However,
# we want the negative of THAT for the trace.
- return -p(*self.vector())
+ return -p(*self.to_vector())
def trace_inner_product(self, other):
EXAMPLES::
sage: J = JordanSpinEJA(3)
- sage: x = J.linear_combination(zip(range(len(J.gens())), J.gens()))
+ sage: x = J.linear_combination(zip(J.gens(),range(len(J.gens()))))
sage: id = identity_matrix(J.base_ring(), J.dimension())
sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
sage: f(x) == x
True
"""
- return self.codomain()(self.matrix()*x.vector())
+ return self.codomain().from_vector(self.matrix()*x.to_vector())
def _add_(self, other):
from sage.matrix.constructor import matrix
-from sage.structure.category_object import normalize_names
from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
"""
- The subalgebra of an EJA generated by a single element.
-
SETUP::
- sage: from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS::
+
+ The natural representation of an element in the subalgebra is
+ the same as its natural representation in the superalgebra::
+
+ sage: set_random_seed()
+ sage: A = random_eja().random_element().subalgebra_generated_by()
+ sage: y = A.random_element()
+ sage: actual = y.natural_representation()
+ sage: expected = y.superalgebra_element().natural_representation()
+ sage: actual == expected
+ True
+
+ """
+ def __init__(self, A, elt):
+ """
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+ sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+
+ EXAMPLES::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: x = sum( i*J.gens()[i] for i in range(6) )
+ sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
+ sage: [ K.element_class(K,x^k) for k in range(J.rank()) ]
+ [f0, f1, f2]
+
+ ::
+
+ """
+ if elt in A.superalgebra():
+ # Try to convert a parent algebra element into a
+ # subalgebra element...
+ try:
+ coords = A.vector_space().coordinate_vector(elt.to_vector())
+ elt = A.from_vector(coords).monomial_coefficients()
+ except AttributeError:
+ # Catches a missing method in elt.to_vector()
+ pass
+
+ s = super(FiniteDimensionalEuclideanJordanElementSubalgebraElement,
+ self)
+
+ s.__init__(A, elt)
+
+
+ def superalgebra_element(self):
+ """
+ Return the object in our algebra's superalgebra that corresponds
+ to myself.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+ ....: random_eja)
- TESTS:
+ EXAMPLES::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: x = sum(J.gens())
+ sage: x
+ e0 + e1 + e2 + e3 + e4 + e5
+ sage: A = x.subalgebra_generated_by()
+ sage: A.element_class(A,x)
+ f1
+ sage: A.element_class(A,x).superalgebra_element()
+ e0 + e1 + e2 + e3 + e4 + e5
+
+ TESTS:
+
+ We can convert back and forth faithfully::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: A = x.subalgebra_generated_by()
+ sage: A.element_class(A,x).superalgebra_element() == x
+ True
+ sage: y = A.random_element()
+ sage: A.element_class(A,y.superalgebra_element()) == y
+ True
+
+ """
+ return self.parent().superalgebra().linear_combination(
+ zip(self.parent()._superalgebra_basis, self.to_vector()) )
- Ensure that non-clashing names are chosen::
- sage: m1 = matrix.identity(QQ,2)
- sage: m2 = matrix(QQ, [[0,1],
- ....: [1,0]])
- sage: J = FiniteDimensionalEuclideanJordanAlgebra(QQ,
- ....: [m1,m2],
- ....: 2,
- ....: names='f')
- sage: J.variable_names()
- ('f0', 'f1')
- sage: A = sum(J.gens()).subalgebra_generated_by()
- sage: A.variable_names()
- ('g0', 'g1')
+
+class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+ """
+ The subalgebra of an EJA generated by a single element.
"""
- @staticmethod
- def __classcall_private__(cls, elt):
+ def __init__(self, elt):
superalgebra = elt.parent()
# First compute the vector subspace spanned by the powers of
# the given element.
V = superalgebra.vector_space()
superalgebra_basis = [superalgebra.one()]
- basis_vectors = [superalgebra.one().vector()]
+ basis_vectors = [superalgebra.one().to_vector()]
W = V.span_of_basis(basis_vectors)
for exponent in range(1, V.dimension()):
new_power = elt**exponent
- basis_vectors.append( new_power.vector() )
+ basis_vectors.append( new_power.to_vector() )
try:
W = V.span_of_basis(basis_vectors)
superalgebra_basis.append( new_power )
# Now figure out the entries of the right-multiplication
# matrix for the successive basis elements b0, b1,... of
# that subspace.
- F = superalgebra.base_ring()
+ field = superalgebra.base_ring()
mult_table = []
for b_right in superalgebra_basis:
b_right_rows = []
# Multiply in the original EJA, but then get the
# coordinates from the subalgebra in terms of its
# basis.
- this_row = W.coordinates((b_left*b_right).vector())
+ this_row = W.coordinates((b_left*b_right).to_vector())
b_right_rows.append(this_row)
- b_right_matrix = matrix(F, b_right_rows)
+ b_right_matrix = matrix(field, b_right_rows)
mult_table.append(b_right_matrix)
for m in mult_table:
m.set_immutable()
mult_table = tuple(mult_table)
+ # TODO: We'll have to redo this and make it unique again...
+ prefix = 'f'
+
# The rank is the highest possible degree of a minimal
# polynomial, and is bounded above by the dimension. We know
# in this case that there's an element whose minimal
# its rank too.
rank = W.dimension()
- # EJAs are power-associative, and this algebra is nothin but
- # powers.
- assume_associative=True
-
- # Figure out a non-conflicting set of names to use.
- valid_names = ['f','g','h','a','b','c','d']
- name_idx = 0
- names = normalize_names(W.dimension(), valid_names[0])
- # This loops so long as the list of collisions is nonempty.
- # Just crash if we run out of names without finding a set that
- # don't conflict with the parent algebra.
- while [y for y in names if y in superalgebra.variable_names()]:
- name_idx += 1
- names = normalize_names(W.dimension(), valid_names[name_idx])
-
- cat = superalgebra.category().Associative()
+ category = superalgebra.category().Associative()
natural_basis = tuple( b.natural_representation()
for b in superalgebra_basis )
- fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, cls)
- return fdeja.__classcall__(cls,
- F,
- mult_table,
- rank,
- superalgebra_basis,
- W,
- assume_associative=assume_associative,
- names=names,
- category=cat,
- natural_basis=natural_basis)
-
- def __init__(self,
- field,
- mult_table,
- rank,
- superalgebra_basis,
- vector_space,
- assume_associative=True,
- names='f',
- category=None,
- natural_basis=None):
-
- self._superalgebra = superalgebra_basis[0].parent()
- self._vector_space = vector_space
+ self._superalgebra = superalgebra
+ self._vector_space = W
self._superalgebra_basis = superalgebra_basis
+
fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
- fdeja.__init__(field,
- mult_table,
- rank,
- assume_associative=assume_associative,
- names=names,
- category=category,
- natural_basis=natural_basis)
+ return fdeja.__init__(field,
+ mult_table,
+ rank,
+ prefix=prefix,
+ category=category,
+ natural_basis=natural_basis)
+
def superalgebra(self):
[ 1 0 0 1 0 1]
[ 0 1 2 3 4 5]
[ 5 11 14 26 34 45]
- sage: (x^0).vector()
+ sage: (x^0).to_vector()
(1, 0, 0, 1, 0, 1)
- sage: (x^1).vector()
+ sage: (x^1).to_vector()
(0, 1, 2, 3, 4, 5)
- sage: (x^2).vector()
+ sage: (x^2).to_vector()
(5, 11, 14, 26, 34, 45)
"""
return self._vector_space
- class Element(FiniteDimensionalEuclideanJordanAlgebraElement):
- """
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- TESTS::
-
- The natural representation of an element in the subalgebra is
- the same as its natural representation in the superalgebra::
-
- sage: set_random_seed()
- sage: A = random_eja().random_element().subalgebra_generated_by()
- sage: y = A.random_element()
- sage: actual = y.natural_representation()
- sage: expected = y.superalgebra_element().natural_representation()
- sage: actual == expected
- True
-
- """
- def __init__(self, A, elt=None):
- """
- SETUP::
-
- sage: from mjo.eja.eja_algebra import RealSymmetricEJA
- sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
-
- EXAMPLES::
-
- sage: J = RealSymmetricEJA(3)
- sage: x = sum( i*J.gens()[i] for i in range(6) )
- sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
- sage: [ K(x^k) for k in range(J.rank()) ]
- [f0, f1, f2]
-
- ::
-
- """
- if elt in A.superalgebra():
- # Try to convert a parent algebra element into a
- # subalgebra element...
- try:
- coords = A.vector_space().coordinates(elt.vector())
- elt = A(coords)
- except AttributeError:
- # Catches a missing method in elt.vector()
- pass
-
- FiniteDimensionalEuclideanJordanAlgebraElement.__init__(self,
- A,
- elt)
-
- def superalgebra_element(self):
- """
- Return the object in our algebra's superalgebra that corresponds
- to myself.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
- ....: random_eja)
-
- EXAMPLES::
-
- sage: J = RealSymmetricEJA(3)
- sage: x = sum(J.gens())
- sage: x
- e0 + e1 + e2 + e3 + e4 + e5
- sage: A = x.subalgebra_generated_by()
- sage: A(x)
- f1
- sage: A(x).superalgebra_element()
- e0 + e1 + e2 + e3 + e4 + e5
-
- TESTS:
-
- We can convert back and forth faithfully::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: A = x.subalgebra_generated_by()
- sage: A(x).superalgebra_element() == x
- True
- sage: y = A.random_element()
- sage: A(y.superalgebra_element()) == y
- True
-
- """
- return self.parent().superalgebra().linear_combination(
- zip(self.vector(), self.parent()._superalgebra_basis) )
+ Element = FiniteDimensionalEuclideanJordanElementSubalgebraElement