def minimal_polynomial(self):
"""
+ ALGORITHM:
+
+ We restrict ourselves to the associative subalgebra
+ generated by this element, and then return the minimal
+ polynomial of this element's operator matrix (in that
+ subalgebra). This works by Baes Proposition 2.3.16.
+
EXAMPLES::
sage: set_random_seed()
True
"""
- # The element we're going to call "minimal_polynomial()" on.
- # Either myself, interpreted as an element of a finite-
- # dimensional algebra, or an element of an associative
- # subalgebra.
- elt = None
-
- if self.parent().is_associative():
- elt = FiniteDimensionalAlgebraElement(self.parent(), self)
- else:
- V = self.span_of_powers()
- assoc_subalg = self.subalgebra_generated_by()
- # Mis-design warning: the basis used for span_of_powers()
- # and subalgebra_generated_by() must be the same, and in
- # the same order!
- elt = assoc_subalg(V.coordinates(self.vector()))
-
- # Recursive call, but should work since elt lives in an
- # associative algebra.
- return elt.minimal_polynomial()
+ V = self.span_of_powers()
+ assoc_subalg = self.subalgebra_generated_by()
+ # Mis-design warning: the basis used for span_of_powers()
+ # and subalgebra_generated_by() must be the same, and in
+ # the same order!
+ elt = assoc_subalg(V.coordinates(self.vector()))
+ return elt.operator_matrix().minimal_polynomial()
def natural_representation(self):