where
import Data.List (intercalate)
-import qualified Data.Vector.Fixed as V
+import Data.Vector.Fixed (
+ Dim,
+ Fun(..),
+ N1,
+ N2,
+ N3,
+ N4,
+ Vector(..),
+ (!),
+ construct,
+ inspect,
+ toList,
+ )
+import qualified Data.Vector.Fixed as V (
+ foldl,
+ length,
+ map,
+ replicate,
+ sum,
+ zipWith
+ )
import Normed
-- | Declare the dimension of the wrapper to be the dimension of what
-- it contains.
-type instance V.Dim (Vn v) = V.Dim v
+type instance Dim (Vn v) = Dim v
-instance (V.Vector v a) => V.Vector (Vn v) a where
+instance (Vector v a) => Vector (Vn v) a where
-- | Fortunately, 'Fun' is an instance of 'Functor'. The
- -- 'V.construct' defined on our contained type will return a
+ -- 'construct' defined on our contained type will return a
-- 'Fun', and we simply slap our constructor on top with fmap.
- construct = fmap Vn V.construct
+ construct = fmap Vn construct
- -- | Defer to the V.inspect defined on the contained type.
- inspect (Vn v1) = V.inspect v1
+ -- | Defer to the inspect defined on the contained type.
+ inspect (Vn v1) = inspect v1
-instance (Show a, V.Vector v a) => Show (Vn v a) where
+instance (Show a, Vector v a) => Show (Vn v a) where
-- | Display vectors as ordinary tuples. This is poor practice, but
-- these results are primarily displayed interactively and
-- convenience trumps correctness (said the guy who insists his
show (Vn v1) =
"(" ++ (intercalate "," element_strings) ++ ")"
where
- v1l = V.toList v1
+ v1l = toList v1
element_strings = Prelude.map show v1l
-- >>> v1 == v3
-- False
--
-instance (Eq a, V.Vector v a, V.Vector v Bool) => Eq (Vn v a) where
+instance (Eq a, Vector v a, Vector v Bool) => Eq (Vn v a) where
(Vn v1) == (Vn v2) = V.foldl (&&) True (V.zipWith (==) v1 v2)
-- | The use of 'Num' here is of course incorrect (otherwise, we
-- wouldn't have to throw errors). But it's really nice to be able
-- to use normal addition/subtraction.
-instance (Num a, V.Vector v a) => Num (Vn v a) where
+instance (Num a, Vector v a) => Num (Vn v a) where
-- | Componentwise addition.
--
-- Examples:
fmap f (Vn v1) = Vn (f `fmap` v1)
-instance (RealFloat a, Ord a, V.Vector v a) => Normed (Vn v a) where
+instance (RealFloat a, Ord a, Vector v a) => Normed (Vn v a) where
-- | The infinity norm. We don't use V.maximum here because it
-- relies on a type constraint that the vector be non-empty and I
-- don't know how to pattern match it away.
-- >>> dot v1 v2
-- 32
--
-dot :: (Num a, V.Vector v a) => Vn v a -> Vn v a -> a
+dot :: (Num a, Vector v a) => Vn v a -> Vn v a -> a
dot (Vn v1) (Vn v2) = V.sum $ V.zipWith (*) v1 v2
-- >>> angle v1 v2 == pi/2.0
-- True
--
-angle :: (RealFloat a, V.Vector v a) => Vn v a -> Vn v a -> a
+angle :: (RealFloat a, Vector v a) => Vn v a -> Vn v a -> a
angle v1 v2 =
acos theta
where
-- >>> v1 !? 3
-- Nothing
--
-(!?) :: (V.Vector v a) => v a -> Int -> Maybe a
+(!?) :: (Vector v a) => v a -> Int -> Maybe a
(!?) v1 idx
| idx < 0 || idx >= V.length v1 = Nothing
- | otherwise = Just $ v1 V.! idx
+ | otherwise = Just $ v1 ! idx
-- components.
data Vec2D a = Vec2D a a
-type instance V.Dim Vec2D = V.N2
-instance V.Vector Vec2D a where
- inspect (Vec2D x y) (V.Fun f) = f x y
- construct = V.Fun Vec2D
+type instance Dim Vec2D = N2
+instance Vector Vec2D a where
+ inspect (Vec2D x y) (Fun f) = f x y
+ construct = Fun Vec2D
data Vec3D a = Vec3D a a a
-type instance V.Dim Vec3D = V.N3
-instance V.Vector Vec3D a where
- inspect (Vec3D x y z) (V.Fun f) = f x y z
- construct = V.Fun Vec3D
+type instance Dim Vec3D = N3
+instance Vector Vec3D a where
+ inspect (Vec3D x y z) (Fun f) = f x y z
+ construct = Fun Vec3D
data Vec4D a = Vec4D a a a a
-type instance V.Dim Vec4D = V.N4
-instance V.Vector Vec4D a where
- inspect (Vec4D w x y z) (V.Fun f) = f w x y z
- construct = V.Fun Vec4D
+type instance Dim Vec4D = N4
+instance Vector Vec4D a where
+ inspect (Vec4D w x y z) (Fun f) = f w x y z
+ construct = Fun Vec4D
-- | Convenience function for creating 2d vectors.