from sage.all import *
-def is_cross_positive(L,K):
+def is_positive_on(L,K):
+ r"""
+ Determine whether or not ``L`` is positive on ``K``.
+
+ We say that ``L`` is positive on ``K`` if `L\left\lparen x
+ \right\rparen` belongs to ``K`` for all `x` in ``K``. This
+ property need only be checked for generators of ``K``.
+
+ INPUT:
+
+ - ``L`` -- A linear transformation or matrix.
+
+ - ``K`` -- A polyhedral closed convex cone.
+
+ OUTPUT:
+
+ ``True`` if it can be proven that ``L`` is positive on ``K``,
+ and ``False`` otherwise.
+
+ .. WARNING::
+
+ If this function returns ``True``, then ``L`` is positive
+ on ``K``. However, if ``False`` is returned, that could mean one
+ of two things. The first is that ``L`` is definitely not
+ positive on ``K``. The second is more of an "I don't know"
+ answer, returned (for example) if we cannot prove that an inner
+ product is nonnegative.
+
+ EXAMPLES:
+
+ The identity is always positive in a nontrivial space::
+
+ sage: set_random_seed()
+ sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
+ sage: L = identity_matrix(K.lattice_dim())
+ sage: is_positive_on(L,K)
+ True
+
+ As is the "zero" transformation::
+
+ sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
+ sage: R = K.lattice().vector_space().base_ring()
+ sage: L = zero_matrix(R, K.lattice_dim())
+ sage: is_positive_on(L,K)
+ True
+
+ TESTS:
+
+ Everything in ``K.positive_operators_gens()`` should be
+ positive on ``K``::
+
+ sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
+ sage: all([ is_positive_on(L,K)
+ ....: for L in K.positive_operators_gens() ])
+ True
+ sage: all([ is_positive_on(L.change_ring(SR),K)
+ ....: for L in K.positive_operators_gens() ])
+ True
+
+ """
+ if L.base_ring().is_exact():
+ # This could potentially be extended to other types of ``K``...
+ return all([ L*x in K for x in K ])
+ elif L.base_ring() is SR:
+ # Fall back to inequality-checking when the entries of ``L``
+ # might be symbolic.
+ return all([ s*(L*x) >= 0 for x in K for s in K ])
+ else:
+ # The only inexact ring that we're willing to work with is SR,
+ # since it can still be exact when working with symbolic
+ # constants like pi and e.
+ raise ValueError('base ring of operator L is neither SR nor exact')
+
+
+def is_cross_positive_on(L,K):
r"""
Determine whether or not ``L`` is cross-positive on ``K``.
We say that ``L`` is cross-positive on ``K`` if `\left\langle
- L\left\lparenx\right\rparen,s\right\rangle >= 0` for all pairs
+ L\left\lparenx\right\rparen,s\right\rangle \ge 0` for all pairs
`\left\langle x,s \right\rangle` in the complementarity set of
- ``K``. It is known that this property need only be
- checked for generators of ``K`` and its dual.
+ ``K``. This property need only be checked for generators of
+ ``K`` and its dual.
INPUT:
sage: set_random_seed()
sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
sage: L = identity_matrix(K.lattice_dim())
- sage: is_cross_positive(L,K)
+ sage: is_cross_positive_on(L,K)
True
As is the "zero" transformation::
sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
sage: R = K.lattice().vector_space().base_ring()
sage: L = zero_matrix(R, K.lattice_dim())
- sage: is_cross_positive(L,K)
+ sage: is_cross_positive_on(L,K)
True
- Everything in ``K.cross_positive_operator_gens()`` should be
- cross-positive on ``K``::
+ TESTS:
+
+ Everything in ``K.cross_positive_operators_gens()`` should be
+ cross-positive on ``K``::
sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
- sage: all([ is_cross_positive(L,K)
- ....: for L in K.cross_positive_operator_gens() ])
+ sage: all([ is_cross_positive_on(L,K)
+ ....: for L in K.cross_positive_operators_gens() ])
+ True
+ sage: all([ is_cross_positive_on(L.change_ring(SR),K)
+ ....: for L in K.cross_positive_operators_gens() ])
True
"""
raise ValueError('base ring of operator L is neither SR nor exact')
-def is_lyapunov_like(L,K):
+def is_Z_on(L,K):
+ r"""
+ Determine whether or not ``L`` is a Z-operator on ``K``.
+
+ We say that ``L`` is a Z-operator on ``K`` if `\left\langle
+ L\left\lparenx\right\rparen,s\right\rangle \le 0` for all pairs
+ `\left\langle x,s \right\rangle` in the complementarity set of
+ ``K``. It is known that this property need only be
+ checked for generators of ``K`` and its dual.
+
+ A matrix is a Z-operator on ``K`` if and only if its negation is a
+ cross-positive operator on ``K``.
+
+ INPUT:
+
+ - ``L`` -- A linear transformation or matrix.
+
+ - ``K`` -- A polyhedral closed convex cone.
+
+ OUTPUT:
+
+ ``True`` if it can be proven that ``L`` is a Z-operator on ``K``,
+ and ``False`` otherwise.
+
+ .. WARNING::
+
+ If this function returns ``True``, then ``L`` is a Z-operator
+ on ``K``. However, if ``False`` is returned, that could mean one
+ of two things. The first is that ``L`` is definitely not
+ a Z-operator on ``K``. The second is more of an "I don't know"
+ answer, returned (for example) if we cannot prove that an inner
+ product is nonnegative.
+
+ EXAMPLES:
+
+ The identity is always a Z-operator in a nontrivial space::
+
+ sage: set_random_seed()
+ sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
+ sage: L = identity_matrix(K.lattice_dim())
+ sage: is_Z_on(L,K)
+ True
+
+ As is the "zero" transformation::
+
+ sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
+ sage: R = K.lattice().vector_space().base_ring()
+ sage: L = zero_matrix(R, K.lattice_dim())
+ sage: is_Z_on(L,K)
+ True
+
+ TESTS:
+
+ Everything in ``K.Z_operators_gens()`` should be a Z-operator
+ on ``K``::
+
+ sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
+ sage: all([ is_Z_on(L,K)
+ ....: for L in K.Z_operators_gens() ])
+ True
+ sage: all([ is_Z_on(L.change_ring(SR),K)
+ ....: for L in K.Z_operators_gens() ])
+ True
+
+ """
+ return is_cross_positive_on(-L,K)
+
+
+def is_lyapunov_like_on(L,K):
r"""
Determine whether or not ``L`` is Lyapunov-like on ``K``.
We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle
L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs
`\left\langle x,s \right\rangle` in the complementarity set of
- ``K``. It is known [Orlitzky]_ that this property need only be
- checked for generators of ``K`` and its dual.
-
- There are faster ways of checking this property. For example, we
- could compute a `lyapunov_like_basis` of the cone, and then test
- whether or not the given matrix is contained in the span of that
- basis. The value of this function is that it works on symbolic
- matrices.
+ ``K``. This property need only be checked for generators of
+ ``K`` and its dual.
INPUT:
answer, returned (for example) if we cannot prove that an inner
product is zero.
- REFERENCES:
-
- M. Orlitzky. The Lyapunov rank of an improper cone.
- http://www.optimization-online.org/DB_HTML/2015/10/5135.html
-
EXAMPLES:
The identity is always Lyapunov-like in a nontrivial space::
sage: set_random_seed()
sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
sage: L = identity_matrix(K.lattice_dim())
- sage: is_lyapunov_like(L,K)
+ sage: is_lyapunov_like_on(L,K)
True
As is the "zero" transformation::
sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
sage: R = K.lattice().vector_space().base_ring()
sage: L = zero_matrix(R, K.lattice_dim())
- sage: is_lyapunov_like(L,K)
+ sage: is_lyapunov_like_on(L,K)
True
- Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
- on ``K``::
+ TESTS:
+
+ Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
+ on ``K``::
sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
- sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
+ sage: all([ is_lyapunov_like_on(L,K)
+ ....: for L in K.lyapunov_like_basis() ])
+ True
+ sage: all([ is_lyapunov_like_on(L.change_ring(SR),K)
+ ....: for L in K.lyapunov_like_basis() ])
True
"""
if L.base_ring().is_exact() or L.base_ring() is SR:
- V = VectorSpace(K.lattice().base_field(), K.lattice_dim()**2)
- LL_of_K = V.span([ V(m.list()) for m in K.lyapunov_like_basis() ])
- return V(L.list()) in LL_of_K
+ # The "fast method" of creating a vector space based on a
+ # ``lyapunov_like_basis`` is actually slower than this.
+ return all([ s*(L*x) == 0
+ for (x,s) in K.discrete_complementarity_set() ])
else:
# The only inexact ring that we're willing to work with is SR,
# since it can still be exact when working with symbolic
return Cone([ g.list() for g in gens ], lattice=L, check=False)
def Sigma_cone(K):
- gens = K.cross_positive_operator_gens()
+ gens = K.cross_positive_operators_gens()
L = ToricLattice(K.lattice_dim()**2)
return Cone([ g.list() for g in gens ], lattice=L, check=False)
def Z_cone(K):
- gens = K.Z_operator_gens()
+ gens = K.Z_operators_gens()
L = ToricLattice(K.lattice_dim()**2)
return Cone([ g.list() for g in gens ], lattice=L, check=False)
def pi_cone(K1, K2=None):
if K2 is None:
K2 = K1
- gens = K1.positive_operator_gens(K2)
+ gens = K1.positive_operators_gens(K2)
L = ToricLattice(K1.lattice_dim()*K2.lattice_dim())
return Cone([ g.list() for g in gens ], lattice=L, check=False)