]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
Remove matrix_simplify_full(), this was merged in trac #12162.
authorMichael Orlitzky <michael@orlitzky.com>
Sat, 19 Sep 2015 01:50:10 +0000 (21:50 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Sat, 19 Sep 2015 01:50:10 +0000 (21:50 -0400)
mjo/symbolic.py

index 3760596c66e3f8f53cded6dbb9b3f9f636324387..e2645a30ed7fe33ceb8fb787d51bfaf87305f1ad 100644 (file)
@@ -44,47 +44,3 @@ def safe_simplify(expr):
     expr = expr.simplify_factorial()
     expr = expr.simplify_log()
     return expr
-
-
-def matrix_simplify_full(A):
-    """
-    Simplify each entry of a symbolic matrix using the
-    Expression.simplify_full() method.
-
-    INPUT:
-
-      - ``A`` - The matrix whose entries we should simplify.
-
-    OUTPUT:
-
-    A copy of ``A`` with all of its entries simplified.
-
-    EXAMPLES:
-
-    Symbolic matrices (examples stolen from Expression.simplify_full())
-    will have their entries simplified::
-
-        sage: a,n,k = SR.var('a,n,k')
-        sage: f1 = sin(x)^2 + cos(x)^2
-        sage: f2 = sin(x/(x^2 + x))
-        sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k)
-        sage: f4 = x*sin(2)/(x^a)
-        sage: A = matrix(SR, [[f1,f2],[f3,f4]])
-        sage: matrix_simplify_full(A)
-        [                1    sin(1/(x + 1))]
-        [     factorial(n) x^(-a + 1)*sin(2)]
-
-    But an exception will be raised if ``A`` is not symbolic::
-
-        sage: A = matrix(QQ, [[1,2],[3,4]])
-        sage: matrix_simplify_full(A)
-        Traceback (most recent call last):
-        ...
-        ValueError: The base ring of `A` must be the Symbolic Ring.
-
-    """
-    if not A.base_ring() == SR:
-        raise ValueError('The base ring of `A` must be the Symbolic Ring.')
-
-    M = A.matrix_space()
-    return M(map(lambda x: x.simplify_full(), A))