expr = expr.simplify_factorial()
expr = expr.simplify_log()
return expr
-
-
-def matrix_simplify_full(A):
- """
- Simplify each entry of a symbolic matrix using the
- Expression.simplify_full() method.
-
- INPUT:
-
- - ``A`` - The matrix whose entries we should simplify.
-
- OUTPUT:
-
- A copy of ``A`` with all of its entries simplified.
-
- EXAMPLES:
-
- Symbolic matrices (examples stolen from Expression.simplify_full())
- will have their entries simplified::
-
- sage: a,n,k = SR.var('a,n,k')
- sage: f1 = sin(x)^2 + cos(x)^2
- sage: f2 = sin(x/(x^2 + x))
- sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k)
- sage: f4 = x*sin(2)/(x^a)
- sage: A = matrix(SR, [[f1,f2],[f3,f4]])
- sage: matrix_simplify_full(A)
- [ 1 sin(1/(x + 1))]
- [ factorial(n) x^(-a + 1)*sin(2)]
-
- But an exception will be raised if ``A`` is not symbolic::
-
- sage: A = matrix(QQ, [[1,2],[3,4]])
- sage: matrix_simplify_full(A)
- Traceback (most recent call last):
- ...
- ValueError: The base ring of `A` must be the Symbolic Ring.
-
- """
- if not A.base_ring() == SR:
- raise ValueError('The base ring of `A` must be the Symbolic Ring.')
-
- M = A.matrix_space()
- return M(map(lambda x: x.simplify_full(), A))