\begin{section}{Arrow}
The identity operator on $V$ is $\identity{V}$. The composition of
$f$ and $g$ is $\compose{f}{g}$. The inverse of $f$ is
- $\inverse{f}$.
+ $\inverse{f}$. If $f$ is a function and $A$ is a subset of its
+ domain, then the preimage under $f$ of $A$ is $\preimage{f}{A}$.
\end{section}
\begin{section}{Common}
% Things dealing with arrows in a category. Or functions, basically.
%
+\input{mjo-common}
+
% The identity operator/arrow on its argument.
\newcommand*{\identity}[1]{ \operatorname{id}_{{#1}} }
% The inverse of an arrow, function, or whatever.
\newcommand*{\inverse}[1]{ #1^{-1} }
+
+% The preimage of the second argument (a set) under the first (a function).
+\newcommand*{\preimage}[2]{ #1^{-1}\of{#2} }