d = dict([(eq.lhs(), eq.rhs()) for eq in equations])
return m.subs(d)
+
+
+def matrix_simplify_full(A):
+ """
+ Simplify each entry of a symbolic matrix using the
+ Expression.simplify_full() method.
+
+ INPUT:
+
+ - ``A`` - The matrix whose entries we should simplify.
+
+ OUTPUT:
+
+ A copy of ``A`` with all of its entries simplified.
+
+ EXAMPLES:
+
+ Symbolic matrices (examples stolen from Expression.simplify_full())
+ will have their entries simplified::
+
+ sage: a,n,k = SR.var('a,n,k')
+ sage: f1 = sin(x)^2 + cos(x)^2
+ sage: f2 = sin(x/(x^2 + x))
+ sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k)
+ sage: f4 = x*sin(2)/(x^a)
+ sage: A = matrix(SR, [[f1,f2],[f3,f4]])
+ sage: matrix_simplify_full(A)
+ [ 1 sin(1/(x + 1))]
+ [ factorial(n) x^(-a + 1)*sin(2)]
+
+ But an exception will be raised if ``A`` is not symbolic::
+
+ sage: A = matrix(QQ, [[1,2],[3,4]])
+ sage: matrix_simplify_full(A)
+ Traceback (most recent call last):
+ ...
+ ValueError: The base ring of `A` must be the Symbolic Ring.
+
+ """
+ if not A.base_ring() == SR:
+ raise ValueError('The base ring of `A` must be the Symbolic Ring.')
+
+ M = A.matrix_space()
+ return M(map(lambda x: x.simplify_full(), A))