raise ValueError('charpoly had no coefficients')
+ def inverse(self):
+ """
+ Return the Jordan-multiplicative inverse of this element.
+
+ We can't use the superclass method because it relies on the
+ algebra being associative.
+
+ TESTS:
+
+ The identity element is its own inverse::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.one().inverse() == J.one()
+ True
+
+ If an element has an inverse, it acts like one. TODO: this
+ can be a lot less ugly once ``is_invertible`` doesn't crash
+ on irregular elements::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: try:
+ ....: x.inverse()*x == J.one()
+ ....: except:
+ ....: True
+ True
+
+ """
+ if self.parent().is_associative():
+ elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+ return elt.inverse()
+
+ # TODO: we can do better once the call to is_invertible()
+ # doesn't crash on irregular elements.
+ #if not self.is_invertible():
+ # raise ArgumentError('element is not invertible')
+
+ # We do this a little different than the usual recursive
+ # call to a finite-dimensional algebra element, because we
+ # wind up with an inverse that lives in the subalgebra and
+ # we need information about the parent to convert it back.
+ V = self.span_of_powers()
+ assoc_subalg = self.subalgebra_generated_by()
+ # Mis-design warning: the basis used for span_of_powers()
+ # and subalgebra_generated_by() must be the same, and in
+ # the same order!
+ elt = assoc_subalg(V.coordinates(self.vector()))
+
+ # This will be in the subalgebra's coordinates...
+ fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
+ subalg_inverse = fda_elt.inverse()
+
+ # So we have to convert back...
+ basis = [ self.parent(v) for v in V.basis() ]
+ pairs = zip(subalg_inverse.vector(), basis)
+ return self.parent().linear_combination(pairs)
+
+
+ def is_invertible(self):
+ """
+ Return whether or not this element is invertible.
+
+ We can't use the superclass method because it relies on
+ the algebra being associative.
+ """
+ return not self.det().is_zero()
+
+
def is_nilpotent(self):
"""
Return whether or not some power of this element is zero.