sage: (J0, J5, J1) = J.peirce_decomposition(c1)
sage: (f0, f1, f2) = J1.gens()
sage: f0.spectral_decomposition()
- [(0, 1.000000000000000?*f2), (1, 1.000000000000000?*f0)]
+ [(0, f2), (1, f0)]
"""
A = self.subalgebra_generated_by(orthonormalize_basis=True)
f1
sage: A(x).superalgebra_element()
e0 + e1 + e2 + e3 + e4 + e5
+ sage: y = sum(A.gens())
+ sage: y
+ f0 + f1
+ sage: B = y.subalgebra_generated_by()
+ sage: B(y)
+ g1
+ sage: B(y).superalgebra_element()
+ f0 + f1
TESTS:
True
"""
- return self.parent().superalgebra().linear_combination(
- zip(self.parent()._superalgebra_basis, self.to_vector()) )
+ W = self.parent().vector_space()
+ V = self.parent().superalgebra().vector_space()
+ A = W.basis_matrix().transpose()
+ W_coords = A*self.to_vector()
+ V_coords = V.coordinate_vector(W_coords)
+ return self.parent().superalgebra().from_vector(V_coords)
self._vector_space = W
- self._superalgebra_basis = superalgebra_basis
-
fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
fdeja.__init__(field,