\end{section}
\begin{section}{Arrow}
- The identity operator on $V$ is $\identity{V}$. The composition of
- $f$ and $g$ is $\compose{f}{g}$. The inverse of $f$ is
+ The constant function that always returns $a$ is $\const{a}$. The
+ identity operator on $V$ is $\identity{V}$. The composition of $f$
+ and $g$ is $\compose{f}{g}$. The inverse of $f$ is
$\inverse{f}$. If $f$ is a function and $A$ is a subset of its
domain, then the preimage under $f$ of $A$ is $\preimage{f}{A}$.
\end{section}
\usepackage{amsopn}
\fi
+
+% The constant function that always returns its argument.
+\newcommand*{\const}[1]{\operatorname{const}_{{#1}}}
+
+\ifdefined\newglossaryentry
+ \newglossaryentry{const}{
+ name={\ensuremath{\const{a}}},
+ description={the constant function that always returns $a$},
+ sort=c
+ }
+\fi
+
% The identity operator/arrow on its argument.
\newcommand*{\identity}[1]{ \operatorname{id}_{{#1}} }