]> gitweb.michael.orlitzky.com - dunshire.git/commitdiff
Add doctests for the solution of some easy games.
authorMichael Orlitzky <michael@orlitzky.com>
Thu, 6 Oct 2016 21:10:40 +0000 (17:10 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Thu, 6 Oct 2016 21:10:40 +0000 (17:10 -0400)
TODO
src/dunshire/symmetric_linear_game.py

diff --git a/TODO b/TODO
index aaf796ff3b89f3546110c7604ee14142f2819c16..b38d65aaf32f7f348767808f0df7ea9588810446 100644 (file)
--- a/TODO
+++ b/TODO
@@ -1,6 +1,3 @@
-1. Add doctests for simple examples like the ones in Dr. Gowda's paper
-   and the identity operator.
-
 2. Add unit testing for crazier things like random invertible matrices.
 
 6. Add real docstrings everywhere.
index 07385d7c3fd25c847a25bc7bee8f38b2b1341263..968d9ca630c0af2fa15e780747785e9705f82ddc 100644 (file)
@@ -39,11 +39,21 @@ class Solution:
           * The optimal strategy of player one.
           * The optimal strategy of player two.
 
-        """
+        EXAMPLES:
+
+           >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
+           Game value: 10.0000000
+           Player 1 optimal:
+             [ 1]
+             [ 2]
+           Player 2 optimal:
+             [ 3]
+             [ 4]
 
+        """
         tpl = 'Game value: {:.7f}\n' \
               'Player 1 optimal:{:s}\n' \
-              'Player 2 optimal:{:s}\n'
+              'Player 2 optimal:{:s}'
 
         p1_str = '\n{!s}'.format(self.player1_optimal())
         p1_str = '\n  '.join(p1_str.splitlines())
@@ -122,8 +132,39 @@ class SymmetricLinearGame:
     def __str__(self):
         """
         Return a string representatoin of this game.
+
+        EXAMPLES:
+
+            >>> from cones import NonnegativeOrthant
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG)
+            The linear game (L, K, e1, e2) where
+              L = [  1  -5 -15]
+                  [ -1   2  -3]
+                  [-12 -15   1],
+              K = Nonnegative orthant in the real 3-space,
+              e1 = [ 1]
+                   [ 1]
+                   [ 1],
+              e2 = [ 1]
+                   [ 2]
+                   [ 3].
+
         """
-        return "a game"
+        tpl = 'The linear game (L, K, e1, e2) where\n' \
+              '  L = {:s},\n' \
+              '  K = {!s},\n' \
+              '  e1 = {:s},\n' \
+              '  e2 = {:s}.'
+        L_str = '\n      '.join(str(self._L).splitlines())
+        e1_str = '\n       '.join(str(self._e1).splitlines())
+        e2_str = '\n       '.join(str(self._e2).splitlines())
+        return tpl.format(L_str, str(self._K), e1_str, e2_str)
+
 
     def solution(self):
         """
@@ -137,6 +178,49 @@ class SymmetricLinearGame:
         could *not* be solved -- which should never happen -- then a
         GameUnsolvableException is raised. It can be printed to get the
         raw output from CVXOPT.
+
+        EXAMPLES:
+
+        This example is computed in Gowda and Ravindran in the section
+        "The value of a Z-transformation":
+
+            >>> from cones import NonnegativeOrthant
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: -6.1724138
+            Player 1 optimal:
+              [ 0.5517241]
+              [-0.0000000]
+              [ 0.4482759]
+            Player 2 optimal:
+              [0.4482759]
+              [0.0000000]
+              [0.5517241]
+
+        The value of the following game can be computed using the fact
+        that the identity is invertible:
+
+            >>> from cones import NonnegativeOrthant
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,0,0],[0,1,0],[0,0,1]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [4,5,6]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 0.0312500
+            Player 1 optimal:
+              [0.0312500]
+              [0.0625000]
+              [0.0937500]
+            Player 2 optimal:
+              [0.1250000]
+              [0.1562500]
+              [0.1875000]
+
         """
         # The cone "C" that appears in the statement of the CVXOPT
         # conelp program.
@@ -164,7 +248,7 @@ class SymmetricLinearGame:
 
         # The matrix "A" that appears on the right-hand side of Ax = b
         # in the statement of the CVXOPT conelp program.
-        A = matrix([0, self._e1], (1, self._K.dimension() + 1), 'd')
+        A = matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
 
         # Actually solve the thing and obtain a dictionary describing
         # what happened.
@@ -188,6 +272,28 @@ class SymmetricLinearGame:
     def dual(self):
         """
         Return the dual game to this game.
+
+        EXAMPLES:
+
+            >>> from cones import NonnegativeOrthant
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.dual())
+            The linear game (L, K, e1, e2) where
+              L = [  1  -1 -12]
+                  [ -5   2 -15]
+                  [-15  -3   1],
+              K = Nonnegative orthant in the real 3-space,
+              e1 = [ 1]
+                   [ 2]
+                   [ 3],
+              e2 = [ 1]
+                   [ 1]
+                   [ 1].
+
         """
         return SymmetricLinearGame(self._L.trans(),
                                    self._K, # Since "K" is symmetric.