Vector space of degree 6 and dimension 2...
sage: J1
Euclidean Jordan algebra of dimension 3...
+ sage: J0.one().natural_representation()
+ [0 0 0]
+ [0 0 0]
+ [0 0 1]
+ sage: orig_df = AA.options.display_format
+ sage: AA.options.display_format = 'radical'
+ sage: J.from_vector(J5.basis()[0]).natural_representation()
+ [ 0 0 1/2*sqrt(2)]
+ [ 0 0 0]
+ [1/2*sqrt(2) 0 0]
+ sage: J.from_vector(J5.basis()[1]).natural_representation()
+ [ 0 0 0]
+ [ 0 0 1/2*sqrt(2)]
+ [ 0 1/2*sqrt(2) 0]
+ sage: AA.options.display_format = orig_df
+ sage: J1.one().natural_representation()
+ [1 0 0]
+ [0 1 0]
+ [0 0 0]
TESTS:
sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
True
- The identity elements in the two subalgebras are the
- projections onto their respective subspaces of the
- superalgebra's identity element::
+ The decomposition is into eigenspaces, and its components are
+ therefore necessarily orthogonal. Moreover, the identity
+ elements in the two subalgebras are the projections onto their
+ respective subspaces of the superalgebra's identity element::
sage: set_random_seed()
sage: J = random_eja()
....: x = J.random_element()
sage: c = x.subalgebra_idempotent()
sage: J0,J5,J1 = J.peirce_decomposition(c)
+ sage: ipsum = 0
+ sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
+ ....: w = w.superalgebra_element()
+ ....: y = J.from_vector(y)
+ ....: z = z.superalgebra_element()
+ ....: ipsum += w.inner_product(y).abs()
+ ....: ipsum += w.inner_product(z).abs()
+ ....: ipsum += y.inner_product(z).abs()
+ sage: ipsum
+ 0
sage: J1(c) == J1.one()
True
sage: J0(J.one() - c) == J0.one()