--
module Linear.QR (
eigenvalues,
+ eigenvectors_symmetric,
givens_rotator,
qr )
where
import qualified Algebra.Ring as Ring ( C )
import qualified Algebra.Algebraic as Algebraic ( C )
+import Control.Arrow ( first )
import Data.Vector.Fixed ( N1, S, ifoldl )
import Data.Vector.Fixed.Cont ( Arity )
import NumericPrelude hiding ( (*) )
import Linear.Matrix (
+ Col,
Mat(..),
(*),
(!!!),
construct,
diagonal,
identity_matrix,
+ symmetric,
transpose )
eigenvalues :: forall m a. (Arity m, Algebraic.C a, Eq a)
=> Int
-> Mat (S m) (S m) a
- -> Mat (S m) N1 a
+ -> Col (S m) a
eigenvalues iterations matrix =
diagonal (ut_approximation iterations)
where
ut_approximation 0 = matrix
ut_approximation k = rk*qk where (qk,rk) = qr (ut_approximation (k-1))
+
+-- | Compute the eigenvalues and eigenvectors of a symmetric matrix
+-- using an iterative QR algorithm. This is similar to what we do in
+-- 'eigenvalues' except we also return the product of all \"Q\"
+-- matrices that we have generated. This turns out to me the matrix
+-- of eigenvectors when the original matrix is symmetric. For
+-- references see Goluv and Van Loan, \"Matrix Computations\", or
+-- \"Calculation of Gauss Quadrature Rules\" by Golub and Welsch.
+--
+-- Examples:
+--
+-- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 )
+-- >>> import Linear.Matrix ( frobenius_norm, fromList, identity_matrix )
+--
+-- >>> let m = identity_matrix :: Mat3 Double
+-- >>> let (vals, vecs) = eigenvectors_symmetric 100 m
+-- >>> let expected_vals = fromList [[1],[1],[1]] :: Col3 Double
+-- >>> let expected_vecs = m
+-- >>> vals == expected_vals
+-- True
+-- >>> vecs == expected_vecs
+-- True
+--
+-- >>> let m = fromList [[3,2,4],[2,0,2],[4,2,3]] :: Mat3 Double
+-- >>> let (vals, vecs) = eigenvectors_symmetric 1000 m
+-- >>> let expected_vals = fromList [[8],[-1],[-1]] :: Col3 Double
+-- >>> let v0' = vec3d (2, 1, 2) :: Col3 Double
+-- >>> let v0 = (1 / (norm v0') :: Double) *> v0'
+-- >>> let v1' = vec3d (1, -2, 0) :: Col3 Double
+-- >>> let v1 = (1 / (norm v1') :: Double) *> v1'
+-- >>> let v2' = vec3d (4, 2, 5) :: Col3 Double
+-- >>> let v2 = (1 / (norm v2') :: Double) *> v2'
+-- >>> frobenius_norm (vals - expected_vals)
+--
+eigenvectors_symmetric :: forall m a. (Arity m, Algebraic.C a, Eq a)
+ => Int
+ -> Mat (S m) (S m) a
+ -> (Col (S m) a, Mat (S m) (S m) a)
+eigenvectors_symmetric iterations matrix
+ | iterations < 0 = error "negative iterations requested"
+ | iterations == 0 = (diagonal matrix, identity_matrix)
+ | not $ symmetric matrix = error "argument is not symmetric"
+ | otherwise =
+ (values, vectors)
+ where
+ -- | We think of \"T\" as an approximation to an
+ -- upper-triangular matrix from which we get our
+ -- eigenvalues. The matrix \"P\" is the product of all
+ -- previous \"Q\"s and its columns approximate the
+ -- eigenvectors.
+ tp_pair :: Int -> (Mat (S m) (S m) a, Mat (S m) (S m) a)
+ tp_pair 0 = (matrix, identity_matrix)
+ tp_pair k = (tk,pk)
+ where
+ (t_prev, p_prev) = tp_pair (k-1)
+ (qk,rk) = qr t_prev
+ tk = rk*qk
+ pk = p_prev*qk
+
+
+ (values, vectors) = (first diagonal) (tp_pair iterations)