return [(x,s) for x in xs for s in ss if x.inner_product(s) == 0]
+def LL(K):
+ r"""
+ Compute the space `\mathbf{LL}` of all Lyapunov-like transformations
+ on this cone.
+
+ OUTPUT:
+
+ A ``MatrixSpace`` object `M` such that every matrix `L \in M` is
+ Lyapunov-like on this cone.
+
+ """
+ pass # implement me lol
+
+
def lyapunov_rank(K):
r"""
Compute the Lyapunov (or bilinearity) rank of this cone.
REFERENCES:
- 1. M.S. Gowda and J. Tao. On the bilinearity rank of a proper cone
- and Lyapunov-like transformations, Mathematical Programming, 147
+ .. [Gowda/Tao] M.S. Gowda and J. Tao. On the bilinearity rank of a proper
+ cone and Lyapunov-like transformations, Mathematical Programming, 147
(2014) 155-170.
- 2. G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear
+ .. [Rudolf et al.] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear
optimality constraints for the cone of positive polynomials,
Mathematical Programming, Series B, 129 (2011) 5-31.
EXAMPLES:
- The nonnegative orthant in `\mathbb{R}^{n}` always has rank `n`::
+ The nonnegative orthant in `\mathbb{R}^{n}` always has rank `n`
+ [Rudolf et al.]_::
sage: positives = Cone([(1,)])
sage: lyapunov_rank(positives)
sage: quadrant = Cone([(1,0), (0,1)])
sage: lyapunov_rank(quadrant)
2
- sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
+ sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: lyapunov_rank(octant)
3
- The `L^{3}_{1}` cone is known to have a Lyapunov rank of one::
+ The `L^{3}_{1}` cone is known to have a Lyapunov rank of one
+ [Rudolf et al.]_::
sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: lyapunov_rank(L31)
1
- Likewise for the `L^{3}_{\infty}` cone::
+ Likewise for the `L^{3}_{\infty}` cone [Rudolf et al.]_::
sage: L3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
sage: lyapunov_rank(L3infty)
1
- The Lyapunov rank should be additive on a product of cones::
+ The Lyapunov rank should be additive on a product of cones
+ [Rudolf et al.]_::
sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: lyapunov_rank(K) == lyapunov_rank(L31) + lyapunov_rank(octant)
True
- Two isomorphic cones should have the same Lyapunov rank. The cone
- ``K`` in the following example is isomorphic to the nonnegative
+ Two isomorphic cones should have the same Lyapunov rank [Rudolf et al.]_.
+ The cone ``K`` in the following example is isomorphic to the nonnegative
octant in `\mathbb{R}^{3}`::
sage: K = Cone([(1,2,3), (-1,1,0), (1,0,6)])
3
The dual cone `K^{*}` of ``K`` should have the same Lyapunov rank as ``K``
- itself::
+ itself [Rudolf et al.]_::
sage: K = Cone([(2,2,4), (-1,9,0), (2,0,6)])
sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
TESTS:
- The Lyapunov rank should be additive on a product of cones::
+ The Lyapunov rank should be additive on a product of cones
+ [Rudolf et al.]_::
sage: K1 = random_cone(max_dim=10, max_rays=10)
sage: K2 = random_cone(max_dim=10, max_rays=10)
True
The dual cone `K^{*}` of ``K`` should have the same Lyapunov rank as ``K``
- itself::
+ itself [Rudolf et al.]_::
sage: K = random_cone(max_dim=10, max_rays=10)
sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
True
+ The Lyapunov rank of a proper polyhedral cone in `n` dimensions can
+ be any number between `1` and `n` inclusive, excluding `n-1`
+ [Gowda/Tao]_ (by accident, this holds for the trivial cone in a
+ trivial space as well)::
+
+ sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True)
+ sage: b = lyapunov_rank(K)
+ sage: n = K.lattice_dim()
+ sage: 1 <= b and b <= n
+ True
+ sage: b == n-1
+ False
+
"""
V = K.lattice().vector_space()