# is supposed to hold the entire long vector, and the subspace W
# of V will be spanned by the vectors that arise from symmetric
# matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+ if len(basis) == 0:
+ return []
+
field = basis[0].base_ring()
dimension = basis[0].nrows()
sage: x.operator().matrix().is_symmetric()
True
+ We can construct the (trivial) algebra of rank zero::
+
+ sage: RealSymmetricEJA(0)
+ Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
"""
@classmethod
def _denormalized_basis(cls, n, field):
sage: x.operator().matrix().is_symmetric()
True
+ We can construct the (trivial) algebra of rank zero::
+
+ sage: ComplexHermitianEJA(0)
+ Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
"""
@classmethod
sage: x.operator().matrix().is_symmetric()
True
+ We can construct the (trivial) algebra of rank zero::
+
+ sage: QuaternionHermitianEJA(0)
+ Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
"""
@classmethod
def _denormalized_basis(cls, n, field):