for i in range(self.dimension())
for j in range(self.dimension()) )
+ def _jordan_product_is_associative(self):
+ r"""
+ Return whether or not this algebra's Jordan product is
+ associative; that is, whether or not `x*(y*z) = (x*y)*z`
+ for all `x,y,x`.
+
+ This method should agree with :meth:`is_associative` unless
+ you lied about the value of the ``associative`` parameter
+ when you constructed the algebra.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+ ....: ComplexHermitianEJA,
+ ....: QuaternionHermitianEJA)
+
+ EXAMPLES::
+
+ sage: J = RealSymmetricEJA(4, orthonormalize=False)
+ sage: J._jordan_product_is_associative()
+ False
+ sage: x = sum(J.gens())
+ sage: A = x.subalgebra_generated_by()
+ sage: A._jordan_product_is_associative()
+ True
+
+ ::
+
+ sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+ sage: J._jordan_product_is_associative()
+ False
+ sage: x = sum(J.gens())
+ sage: A = x.subalgebra_generated_by(orthonormalize=False)
+ sage: A._jordan_product_is_associative()
+ True
+
+ ::
+
+ sage: J = QuaternionHermitianEJA(2)
+ sage: J._jordan_product_is_associative()
+ False
+ sage: x = sum(J.gens())
+ sage: A = x.subalgebra_generated_by()
+ sage: A._jordan_product_is_associative()
+ True
+
+ """
+ R = self.base_ring()
+
+ # Used to check whether or not something is zero.
+ epsilon = R.zero()
+ if not R.is_exact():
+ # I don't know of any examples that make this magnitude
+ # necessary because I don't know how to make an
+ # associative algebra when the element subalgebra
+ # construction is unreliable (as it is over RDF; we can't
+ # find the degree of an element because we can't compute
+ # the rank of a matrix). But even multiplication of floats
+ # is non-associative, so *some* epsilon is needed... let's
+ # just take the one from _inner_product_is_associative?
+ epsilon = 1e-15
+
+ for i in range(self.dimension()):
+ for j in range(self.dimension()):
+ for k in range(self.dimension()):
+ x = self.gens()[i]
+ y = self.gens()[j]
+ z = self.gens()[k]
+ diff = (x*y)*z - x*(y*z)
+
+ if diff.norm() > epsilon:
+ return False
+
+ return True
+
def _inner_product_is_associative(self):
r"""
Return whether or not this algebra's inner product `B` is