inner_product = lambda x,y: x.inner_product(y)
norm = lambda x: inner_product(x,x).sqrt()
- def proj(x,y):
- return (inner_product(x,y)/inner_product(x,x))*x
-
v = list(v) # make a copy, don't clobber the input
# Drop all zero vectors before we start.
R = v[0].base_ring()
+ # Define a scaling operation that can be used on tuples.
+ # Oh and our "zero" needs to belong to the right space.
+ scale = lambda x,alpha: x*alpha
+ zero = v[0].parent().zero()
+ if hasattr(v[0], 'cartesian_factors'):
+ P = v[0].parent()
+ scale = lambda x,alpha: P(tuple( x_i*alpha
+ for x_i in x.cartesian_factors() ))
+
+
+ def proj(x,y):
+ return scale(x, (inner_product(x,y)/inner_product(x,x)))
+
# First orthogonalize...
for i in range(1,len(v)):
# Earlier vectors can be made into zero so we have to ignore them.
- v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() )
+ v[i] -= sum( (proj(v[j],v[i])
+ for j in range(i)
+ if not v[j].is_zero() ),
+ zero )
# And now drop all zero vectors again if they were "orthogonalized out."
v = [ v_i for v_i in v if not v_i.is_zero() ]
# them here because then our subalgebra would have a bigger field
# than the superalgebra.
for i in range(len(v)):
- v[i] = v[i] / norm(v[i])
+ v[i] = scale(v[i], ~norm(v[i]))
return v