]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: delete obsolete cartesian product methods.
authorMichael Orlitzky <michael@orlitzky.com>
Wed, 24 Feb 2021 16:12:28 +0000 (11:12 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Wed, 24 Feb 2021 16:12:28 +0000 (11:12 -0500)
mjo/eja/eja_algebra.py

index c862b0d3ec00305193eb85265a7e33c556a59543..51ff79054eab8cdb83fe48c3d566131598b46278 100644 (file)
@@ -2823,19 +2823,6 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         ...
         ValueError: all factors must share the same base field
 
-    The "cached" Jordan and inner products are the componentwise
-    ones::
-
-        sage: set_random_seed()
-        sage: J1 = random_eja()
-        sage: J2 = random_eja()
-        sage: J = cartesian_product([J1,J2])
-        sage: x,y = J.random_elements(2)
-        sage: x*y == J.cartesian_jordan_product(x,y)
-        True
-        sage: x.inner_product(y) == J.cartesian_inner_product(x,y)
-        True
-
     The cached unit element is the same one that would be computed::
 
         sage: set_random_seed()              # long time
@@ -3112,82 +3099,6 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
 
-    def cartesian_jordan_product(self, x, y):
-        r"""
-        The componentwise Jordan product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        Jordan products from the subalgebras. This may still be useful
-        after (if) the default Jordan product in the Cartesian product
-        algebra is overridden.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  JordanSpinEJA)
-
-        EXAMPLE::
-
-            sage: J1 = HadamardEJA(3)
-            sage: J2 = JordanSpinEJA(3)
-            sage: J = cartesian_product([J1,J2])
-            sage: x1 = J1.from_vector(vector(QQ,(1,2,1)))
-            sage: y1 = J1.from_vector(vector(QQ,(1,0,2)))
-            sage: x2 = J2.from_vector(vector(QQ,(1,2,3)))
-            sage: y2 = J2.from_vector(vector(QQ,(1,1,1)))
-            sage: z1 = J.from_vector(vector(QQ,(1,2,1,1,2,3)))
-            sage: z2 = J.from_vector(vector(QQ,(1,0,2,1,1,1)))
-            sage: (x1*y1).to_vector()
-            (1, 0, 2)
-            sage: (x2*y2).to_vector()
-            (6, 3, 4)
-            sage: J.cartesian_jordan_product(z1,z2).to_vector()
-            (1, 0, 2, 6, 3, 4)
-
-        """
-        m = len(self.cartesian_factors())
-        projections = ( self.cartesian_projection(i) for i in range(m) )
-        products = ( P(x)*P(y) for P in projections )
-        return self._cartesian_product_of_elements(tuple(products))
-
-    def cartesian_inner_product(self, x, y):
-        r"""
-        The standard componentwise Cartesian inner-product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        inner-products from the subalgebras. This may still be useful
-        after (if) the default inner product in the Cartesian product
-        algebra is overridden.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  QuaternionHermitianEJA)
-
-        EXAMPLE::
-
-            sage: J1 = HadamardEJA(3,field=QQ)
-            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
-            sage: J = cartesian_product([J1,J2])
-            sage: x1 = J1.one()
-            sage: x2 = x1
-            sage: y1 = J2.one()
-            sage: y2 = y1
-            sage: x1.inner_product(x2)
-            3
-            sage: y1.inner_product(y2)
-            2
-            sage: z1 = J._cartesian_product_of_elements((x1,y1))
-            sage: z2 = J._cartesian_product_of_elements((x2,y2))
-            sage: J.cartesian_inner_product(z1,z2)
-            5
-
-        """
-        m = len(self.cartesian_factors())
-        projections = ( self.cartesian_projection(i) for i in range(m) )
-        return sum( P(x).inner_product(P(y)) for P in projections )
-
-
     def _element_constructor_(self, elt):
         r"""
         Construct an element of this algebra from an ordered tuple.