...
ValueError: all factors must share the same base field
- The "cached" Jordan and inner products are the componentwise
- ones::
-
- sage: set_random_seed()
- sage: J1 = random_eja()
- sage: J2 = random_eja()
- sage: J = cartesian_product([J1,J2])
- sage: x,y = J.random_elements(2)
- sage: x*y == J.cartesian_jordan_product(x,y)
- True
- sage: x.inner_product(y) == J.cartesian_inner_product(x,y)
- True
-
The cached unit element is the same one that would be computed::
sage: set_random_seed() # long time
return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
- def cartesian_jordan_product(self, x, y):
- r"""
- The componentwise Jordan product.
-
- We project ``x`` and ``y`` onto our factors, and add up the
- Jordan products from the subalgebras. This may still be useful
- after (if) the default Jordan product in the Cartesian product
- algebra is overridden.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (HadamardEJA,
- ....: JordanSpinEJA)
-
- EXAMPLE::
-
- sage: J1 = HadamardEJA(3)
- sage: J2 = JordanSpinEJA(3)
- sage: J = cartesian_product([J1,J2])
- sage: x1 = J1.from_vector(vector(QQ,(1,2,1)))
- sage: y1 = J1.from_vector(vector(QQ,(1,0,2)))
- sage: x2 = J2.from_vector(vector(QQ,(1,2,3)))
- sage: y2 = J2.from_vector(vector(QQ,(1,1,1)))
- sage: z1 = J.from_vector(vector(QQ,(1,2,1,1,2,3)))
- sage: z2 = J.from_vector(vector(QQ,(1,0,2,1,1,1)))
- sage: (x1*y1).to_vector()
- (1, 0, 2)
- sage: (x2*y2).to_vector()
- (6, 3, 4)
- sage: J.cartesian_jordan_product(z1,z2).to_vector()
- (1, 0, 2, 6, 3, 4)
-
- """
- m = len(self.cartesian_factors())
- projections = ( self.cartesian_projection(i) for i in range(m) )
- products = ( P(x)*P(y) for P in projections )
- return self._cartesian_product_of_elements(tuple(products))
-
- def cartesian_inner_product(self, x, y):
- r"""
- The standard componentwise Cartesian inner-product.
-
- We project ``x`` and ``y`` onto our factors, and add up the
- inner-products from the subalgebras. This may still be useful
- after (if) the default inner product in the Cartesian product
- algebra is overridden.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (HadamardEJA,
- ....: QuaternionHermitianEJA)
-
- EXAMPLE::
-
- sage: J1 = HadamardEJA(3,field=QQ)
- sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
- sage: J = cartesian_product([J1,J2])
- sage: x1 = J1.one()
- sage: x2 = x1
- sage: y1 = J2.one()
- sage: y2 = y1
- sage: x1.inner_product(x2)
- 3
- sage: y1.inner_product(y2)
- 2
- sage: z1 = J._cartesian_product_of_elements((x1,y1))
- sage: z2 = J._cartesian_product_of_elements((x2,y2))
- sage: J.cartesian_inner_product(z1,z2)
- 5
-
- """
- m = len(self.cartesian_factors())
- projections = ( self.cartesian_projection(i) for i in range(m) )
- return sum( P(x).inner_product(P(y)) for P in projections )
-
-
def _element_constructor_(self, elt):
r"""
Construct an element of this algebra from an ordered tuple.